Gram 矩阵是由一组向量的内积构成的矩阵。如果你有一组向量 v 1 , v 2 , … , v n v_1, v_2, \ldots, v_n v1,v2,…,vn,Gram 矩阵 G G G 的元素 G i j G_{ij} Gij 就是向量 v i v_i vi 和向量 v j v_j vj 的内积。数学上,Gram 矩阵的计算方式如下:
假设有 n n n 个向量 v 1 , v 2 , … , v n v_1, v_2, \ldots, v_n v1,v2,…,vn,每个向量的维度为 m m m(这意味着每个向量都有 m m m 个元素),则 Gram 矩阵 G G G 的元素 G i j G_{ij} Gij 计算如下:
G i j = v i ⋅ v j = ∑ k = 1 m v i [ k ] ⋅ v j [ k ] G_{ij} = v_i \cdot v_j = \sum_{k=1}^{m} v_i[k] \cdot v_j[k] Gij=vi⋅vj=k=1∑mvi[k]⋅vj[k]
其中, v i [ k ] v_i[k] vi[k] 表示向量 v i v_i vi 的第 k k k 个元素, v j [ k ] v_j[k] vj[k] 表示向量 v j v_j vj 的第 k k k 个元素。
Gram 矩阵通常是一个对称矩阵,因为 G i j = G j i G_{ij} = G_{ji} Gij=Gji,这是因为内积的交换性质。Gram 矩阵在机器学习和线性代数中有广泛的应用,例如在特征提取、核方法等领域。它可以用来表示向量之间的相似性和关联。
让我们通过一个具体的示例来计算一个Gram矩阵。假设有三个二维向量:
v 1 = [ 1 , 2 ] v 2 = [ 3 , 4 ] v 3 = [ 5 , 6 ] v_1 = [1, 2] v_2 = [3, 4] v_3 = [5, 6] v1=[1,2]v2=[3,4]v3=[5,6]
我们想要计算这些向量的Gram矩阵 G G G,根据前面的定义,我们计算每一对向量的内积来填充矩阵 G G G的元素。
首先,计算 G 11 G_{11} G11,即向量 v 1 v_1 v1与自己的内积:
G 11 = v 1 ⋅ v 1 = ( 1 ⋅ 1 ) + ( 2 ⋅ 2 ) = 1 + 4 = 5 G_{11} = v_1 \cdot v_1 = (1 \cdot 1) + (2 \cdot 2) = 1 + 4 = 5 G11=v1⋅v1=(1⋅1)+(2⋅2)=1+4=5
接下来,计算 G 12 G_{12} G12,即向量 v 1 v_1 v1与向量 v 2 v_2 v2的内积:
G 12 = v 1 ⋅ v 2 = ( 1 ⋅ 3 ) + ( 2 ⋅ 4 ) = 3 + 8 = 11 G_{12} = v_1 \cdot v_2 = (1 \cdot 3) + (2 \cdot 4) = 3 + 8 = 11 G12=v1⋅v2=(1⋅3)+(2⋅4)=3+8=11
继续计算 G 13 G_{13} G13, G 21 G_{21} G21, G 22 G_{22} G22, G 23 G_{23} G23, G 31 G_{31} G31, G 32 G_{32} G32,和 G 33 G_{33} G33,按照同样的方式计算每一对向量的内积。
最终,我们得到Gram矩阵 G G G如下:
G = [ 5 11 17 11 25 39 17 39 61 ] G = \begin{bmatrix} 5 & 11 & 17 \\ 11 & 25 & 39 \\ 17 & 39 & 61 \\ \end{bmatrix} G= 51117112539173961
这就是这三个向量的Gram矩阵。每个元素 G i j G_{ij} Gij表示了向量 v i v_i vi和 v j v_j vj之间的内积。这个矩阵在机器学习中可以用于许多任务,包括核方法和特征提取。