- CIANNA由天体物理学家提供/为天体物理学家提供的卷积交互式人工神经网络
struggle2025
神经网络
一、软件介绍文末提供程序和源码下载CIANNA是一个通用的深度学习框架,主要用于天文数据分析。根据天体物理问题解决的相关性添加功能和优化。CIANNA可用于为各种任务构建和训练大型神经网络模型,并提供高级Python接口(类似于keras、pytorch等)。CIANNA的特点之一是它定制实施了受YOLO启发的对象探测器,用于2D或3D射电天文数据产品中的星系探测。该框架通过低级CUDA编程完全实
- 道路交通标志检测数据集-智能地图与导航 交通监控与执法 智慧城市交通管理-2,000 张图像
cver123
数据集智慧城市人工智能目标跟踪计算机视觉目标检测
道路交通标志检测数据集已发布目标检测数据集合集(持续更新)道路交通标志检测数据集介绍数据集概览包含类别应用场景数据样本展示YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.数据准备2.1数据标注格式(YOLO)2.2文件结构示例2.3创建data.yaml配置文件3.模型训练关键参数补充说明:4.模型验证与测试4.1验证模型性能关键参数详解常用可选参数典型输出指标4.
- onnx-web + yolov8n 在视频流里做推理
CHEN_RUI_2200
人工智能YOLO
顺着我上一篇文章使用onnxruntime-web运行yolov8-nano推理继续说,有朋友在问能不能接入视频流动,实时去识别物品。首先使用getUserMedia获取摄像头视频流getUserMediaAPI可以访问设备的摄像头和麦克风。你可以使用这个API获取视频流,并将其显示在页面上的标签中。注意事项:浏览器支持:getUserMedia被现代浏览器大多数支持,但在一些旧版浏览器上可能不兼
- 使用YOLOv5-ONNX-PyQT-EXE: 全栈式对象检测应用的构建与部署
使用YOLOv5-ONNX-PyQT-EXE:全栈式对象检测应用的构建与部署去发现同类优质开源项目:https://gitcode.com/在计算机视觉领域,实时对象检测是一个至关重要的任务。是一个开源项目,它将流行的YOLOv5对象检测模型集成到ONNX(OpenNeuralNetworkExchange)中,并通过PyQT构建了一个可执行的应用程序,使得非开发人员也能轻松地进行对象检测。项目简
- 基于YOLOv8的桃子成熟度检测系统,支持图片、视频、摄像头输入,PyQt5界面检测。识别并分类桃子的成熟度(未熟、半熟、成熟)
QQ67658008
YOLO音视频qt桃子成熟水果成熟度检测系统
基于YOLOv8的桃子成熟度检测系统,支持图片、视频、摄像头输入,PyQt5界面检测。识别并分类桃子的成熟度(未熟、半熟、成熟)文章目录调用示例加载预训练模型开始训练加载训练好的模型在验证集上评估加载训练好的模型文字及代码仅供参考。桃子成熟度分类检测数据集,主要用于桃子成熟度分类检测应用任务数据背景:模拟实际田间条件,涵盖多种可能影响桃子检测准确性的因素,如变化的自然光照强度、多果粘连现象以及由枝
- YOLOv5-7.0解决报错 wandb: Network error (TransientError), entering retry loop.
Paper Clouds
Yolo目标检测YOLO人工智能机器学习pythonpytorch深度学习目标检测
前言最近在复习yolov5目标检测代码时用了yolov5的最新7.0版本,之前用的是5.0版本,这一新版本相对于之前做了一些提升,对于package的兼容也要好了很多,但也不是说下载了直接就能运行,实际使用过程中还是遇到了许多新的问题,下面就我自己碰到的问题提出解决方法。问题wandb是非常好用的可视化工具,但是国内的话,使用时常常会无法同步数据,需要借助魔法来连接服务器,而yolov5的源码恰恰
- 基于 opencv+yolov8+easyocr的车牌追踪识别
(ECUT)Edward-tan
人工智能--CVpython进阶全栈开发opencvyolov8ocrpython
(本项目所有代码打包至我的资源中,大家可在我的文章底部选择下载)目录需求实现效果学习视频大致思路代码实现资源下载需求通过车辆识别技术,识别视频中每个车辆及其车牌号,车辆应进行追踪,避免重复计数量。实现效果车牌识别学习视频使用Python、Yolov8和EasyOCR自动识别车牌计算机视觉教程_哔哩哔哩_bilibili大致思路通过opencv将视频转换为帧,对帧应用车辆识别模型,并使用model.
- 深度学习应用于情感识别:利用YOLOv8进行AffectNet情感分类
YOLO实战营
深度学习YOLO分类人工智能目标检测目标跟踪数据挖掘
引言情感识别(EmotionRecognition)是计算机视觉和自然语言处理中的一个重要研究方向,广泛应用于人机交互、智能客服、心理健康监测、视频分析等领域。随着深度学习技术的发展,情感识别取得了显著进展,特别是在面部表情识别方面。面部表情作为人类情感的自然表现之一,能在很大程度上反映个体的情感状态。AffectNet数据集是一个广泛使用的情感识别数据集,它包含了大量带有标注情感标签的面部表情图
- 如何使用YOLOv8对遥感图像中的滑坡-泥石流进行分割 深度学习遥感图像滑坡泥石流分割数据集的训练及应用
计算机C9硕士_算法工程师
YOLO深度学习人工智能
如何使用YOLOv8对遥感图像中的滑坡-泥石流进行分割深度学习遥感图像滑坡泥石流分割数据集的训练及应用文章目录遥感图像滑坡-泥石流分割数据集情况数据集概述类别统计总体统计注意事项✅一、安装CUDA驱动(Linux示例)✅二、安装Anaconda(Linux示例)✅三、创建Python虚拟环境并安装依赖✅四、数据集结构示例(遥感图像滑坡-泥石流分割)✅五、创建data.yaml文件(用于训练)✅六、
- 深度学习目标检测中使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化
计算机C9硕士_算法工程师
深度学习目标检测YOLO
深度学习目标检测中使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化文章目录1.环境设置2.数据准备3.模型训练4.推理与结果可视化推理代码示例5.构建可视化界面PyQt5GUI代码示例总结以下文字及代码仅供参考。树冠检测数据集的训练及推理1使用YOLOv8训练树冠检测数据集,从环境设置、数据准备、模型训练、推理和结果可视化等方面进行详细介绍。1.环境设置首先确保
- Python 人工智能Ai视觉模型 YOLOv8
GHY云端大师
pythonAI大模型视觉训练人工智能YOLO
YOLOv8简介:Python中的高效AI视觉模型YOLOv8是Ultralytics公司开发的最新目标检测模型,属于YOLO(YouOnlyLookOnce)系列的最新版本,以其高效和准确著称。核心特点高性能:在速度和精度之间取得了更好的平衡多功能:支持目标检测、实例分割和图像分类用户友好:简化了API设计,更易于使用可扩展性:支持从移动端到云端的多种部署场景主要改进更高的检测精度更快的推理速度
- Yolov5 ONNX Runtime 的 Python 部署
爱钓鱼的歪猴
#目标检测模型部署YOLO
这里使用的yolov56.2,使用export.py很方便地得到onnx格式的模型。然后用onnxruntime推理框架在Python上进行部署。主要是为了测试模型的准确,模型部署的最终是用C++部署,从而部署在嵌入式设备等。整个代码分为四个部分:1、对输入进行预处理;2、onnxruntime推理得到输出;3、对输出进行后处理4、画预测框代码的难点是nms处理。代码尚存在的缺陷是,将输入图像处理
- 一[3.0]、 yolov8 工作原理
他人是一面镜子,保持谦虚的态度
车道检测研究YOLO
目录YOLOv8简介什么是YOLOv8?yaml配置文件解析YOLOv8架构图Yolov8有什么新功能?YOLO模型彻底改变了计算机视觉领域。识别物体是计算机视觉中的一项关键任务,可应用于机器人、医学成像、监控系统和自动驾驶汽车等多个领域。YOLO模型的最新版本YOLOv8是一种先进的实时物体检测框架,引起了研究界的关注。在所有流行的物体识别机器学习模型(如FasterR-CNN、SSD和Reti
- 轻量化与性能双提升:YOLOv8中的Slim-Neck特征融合创新【YOLOv8】
程序员Gloria
YOLO目标跟踪YOLOv8
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录轻量化与性能双提升:YOLOv8中的Slim-Neck特征融合创新YOLOv8的Neck结构Slim
- AI人工智能目标检测在体育赛事中的应用
AI大模型应用之禅
人工智能目标检测计算机视觉ai
AI人工智能目标检测在体育赛事中的应用关键词:目标检测、计算机视觉、深度学习、体育分析、YOLO、运动员追踪、比赛统计摘要:本文深入探讨了AI目标检测技术在体育赛事中的创新应用。我们将从计算机视觉基础出发,详细分析目标检测的核心算法原理,特别是YOLO系列模型在运动员和球类追踪中的实现方式。文章包含完整的数学模型解释、Python实战项目演示,以及在实际体育场景中的应用案例分析。最后,我们展望了这
- 【推理加速】TensorRT C++ 部署YOLO11全系模型
gloomyfish
c++开发语言
YOLO11YOLO11C++推理YOLO11是Ultralytics最新发布的目标检测、实例分割、姿态评估的系列模型视觉轻量化框架,基于前代YOLO8版本进行了多项改进和优化。YOLO11在特征提取、效率和速度、准确性以及环境适应性方面都有显著提升,达到SOTA。TensorRTC++SDK最新版本的TensorRT10.x版本已经修改了推理的接口函数与查询输入输出层的函数,其中以YOLO11对
- YOLO + OpenVINO 在英特尔平台部署实战:性能调优与跨架构加速全流程指南
YOLO+OpenVINO在英特尔平台部署实战:性能调优与跨架构加速全流程指南关键词:YOLOv5、YOLOv8、OpenVINO、英特尔部署、IR模型、异构加速、CPU推理、VPU、GPU、多设备调度、边缘计算摘要:本篇文章聚焦如何使用OpenVINO在英特尔平台高效部署YOLO系列目标检测模型,结合当前主流的YOLOv5与YOLOv8架构,详解模型格式转换、推理接口调用、多设备异构调度与性能优
- 深度解析YOLOv8:CSPHet卷积结构如何实现极致轻量化
向哆哆
YOLO创新涨点系列YOLOyolov8架构目标检测机器学习
文章目录一、背景介绍1.1YOLOv8的现状1.2降参数的必要性二、相关技术介绍2.1Dual思想2.2HetConv三、CSPHet结构设计3.1CSP模块的改进3.2结合HetConv3.3参数量的下降四、CSPHet的代码实现五、实验结果六、总结与展望在目标检测领域,YOLO系列算法一直以其卓越的速度和准确率受到广泛关注。随着深度学习技术的不断发展,研究人员不断探索如何进一步优化YOLO算法
- 深入研究YOLO算法改进中的注意力机制
周立-ric
本文还有配套的精品资源,点击获取简介:YOLO算法因其高效和准确而在实时目标检测领域备受青睐。注意力机制的引入对YOLO算法的性能提升起到了关键作用,尤其是通过关注图像关键区域来提高检测精度。注意力机制可以细分为通道注意力、空间注意力、自注意力、多尺度注意力和位置感知注意力等类型,每种类型的注意力机制都旨在优化模型对图像特征的理解和处理。本文档提供了一个包含实现这些注意力机制的代码的压缩包,并介绍
- YOLO11改进|注意力机制篇|引入注意力机制Shuffle Attention
如果能为勤奋颁奖
YOLO11改进专栏YOLO
目录一、【ShuffleAttention】注意力机制1.1【ShuffleAttention】注意力介绍1.2【ShuffleAttention】核心代码二、添加【ShuffleAttention】注意力机制2.1STEP12.2STEP22.3STEP32.4STEP4三、yaml文件与运行3.1yaml文件3.2运行成功截图一、【ShuffleAttention】注意力机制1.1【Shuff
- yolov11转ncnn
model2005
YOLOncnn
yolo模型pt格式文件转ncnn,以适用于移动端的部署。原先要经过onnx,onnxsim等转换,cmake编译,现直接可生成(如何从YOLO11导出到NCNN以便顺利部署)。fromultralyticsimportYOLO#LoadtheYOLO11modelmodel=YOLO("yolo11s.pt")#ExportthemodeltoNCNNformatmodel.export(for
- 目标检测——YOLOX算法解读
论文:YOLOX:ExceedingYOLOSeriesin2021(2021.7.18)作者:ZhengGe,SongtaoLiu,FengWang,ZemingLi,JianSun链接:https://arxiv.org/abs/2107.08430代码:https://github.com/Megvii-BaseDetection/YOLOXYOLO系列算法解读:YOLOv1通俗易懂版解读、
- 目标检测——YOLO11算法解读
lishanlu136
#目标检测目标检测YOLO11YOLO系列算法解读
作者:Ultralytics公司代码:https://github.com/ultralytics/ultralyticsYOLO系列算法解读:YOLOv1通俗易懂版解读、SSD算法解读、YOLOv2算法解读、YOLOv3算法解读、YOLOv4算法解读、YOLOv5算法解读、YOLOR算法解读、YOLOX算法解读、YOLOv6算法解读、YOLOv7算法解读、
- (二十一)YOLO 全解析:从实时目标检测到多任务视觉智能
只有左边一个小酒窝
深度学习YOLO目标检测人工智能深度学习计算机视觉
1YOLO的发展脉络与技术定位1.1发展脉络YOLOv1(2015年):将目标检测重新定义为单一回归问题,把输入图像划分为S×S网格,每个网格单元负责预测固定数量的边界框及对应的类别概率,直接从像素回归预测物体的边界框坐标和类别概率。但存在小目标检测能力弱、定位精度不足等局限。YOLOv2(2016年):引入批量归一化、锚框、维度集群等技术,还提出了高分辨率分类器、直接位置预测、细粒度特征融合、多
- 使用预训练权重在YOLO模型上训练新数据集的完整指南
马里马里奥-
YOLO目标跟踪人工智能
使用预训练权重在YOLO模型上训练新数据集的完整指南引言在目标检测领域,迁移学习已成为提升模型性能的关键技术。本文将详细介绍如何利用预训练权重在YOLO(YouOnlyLookOnce)框架上训练自定义数据集,帮助您节省训练时间并提高检测精度。为什么使用预训练权重?加速收敛:预训练模型已学习通用特征,训练时间可缩短30%−70%30\%-70\%30%−70%小样本适配:在数据量有限时(n<100
- 解决YOLO模型从Python迁移到C++时目标漏检问题——跨语言部署中的关键陷阱与解决方案
马里马里奥-
YOLOpythonc++
问题背景当我们将Python训练的YOLO模型部署到C++环境时,常遇到部分目标漏检问题。这通常源于预处理/后处理差异、数据类型隐式转换或模型转换误差。本文通过完整案例解析核心问题并提供可落地的解决方案。一、常见原因分析预处理不一致Python常用OpenCV(BGR通道,归一化[0,1][0,1][0,1])C++可能误用其他库(如RGB通道,归一化[−1,1][-1,1][−1,1])差异值=
- C++、OpenVINO部署YOLOv5模型的指南(Windows)
马里马里奥-
c++openvinoopencv
C++、OpenVINO部署YOLOv5模型的指南(Windows)一、环境准备硬件要求软件配置二、模型转换流程1.导出ONNX模型2.转换为OpenVINOIR格式三、C++推理实现核心代码结构后处理关键算法四、性能优化技巧五、常见问题解答1:输出形状不匹配2:推理速度不达标六、部署效果展示七、结语一、环境准备硬件要求Intel第6代以上CPU16GB内存50GB可用磁盘空间软件配置Visual
- YOLO理论知识简单了解
老农民编程
视觉与YoLo模型认知YOLO
目录前言一、YOLO是什么?以及核心思想?1、目标检测的本质与分类2、YOLO核心思想二、为什么使用YOLO,优势是什么?三、怎么使用YOLO模型?总结前言对YOLO模型的简单理解,对其进行记录。一、YOLO是什么?以及核心思想?YOLO(YouOnlyLookOnce)模型是一种用于实时目标检测的深度学习模型,所以首先需了解目标检测的概念。1、目标检测的本质与分类1.目标检测本质:目标在哪里:检
- yolov5 yolov8 yolov10 Ultralytics 奇奇怪怪的错误汇总:【版本兼容,模型训练,数据加载,模型加速】
shiter
人工智能系统解决方案与技术架构深度学习pythonpytorchyolov5
文章大纲ultralyticsYOLO最新版本问题Numpyisnotavailable不同小版本的网络不兼容问题RuntimeError:Theexpandedsizeofthetensor(1)mustmatch...RuntimeError:torch.cat():Sizesoftensorsmustmatchexceptindimension1.Got24and23indimension2
- YOLOv12:以注意力为中心的物体检测
发呆小天才O.o
计算机视觉深度学习计算机视觉目标检测YOLOv12
1.概述实时目标检测已成为许多实际应用的关键,而Ultralytics的YOLO(YouOnlyLookOnce)系列一直是最先进的模型系列,在速度和准确率之间实现了稳健的平衡。注意力机制的低效性阻碍了其在YOLO等高速系统中的应用。YOLOv12旨在通过将注意力机制集成到YOLO框架中来改变这一现状。由于注意力机制效率低下,且计算复杂度高达平方级,内存访问操作效率低下,因此大多数目标检测架构传统
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc