- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- 从LLM出发:由浅入深探索AI开发的全流程与简单实践(全文3w字)
码事漫谈
AI人工智能
文章目录第一部分:AI开发的背景与历史1.1人工智能的起源与发展1.2神经网络与深度学习的崛起1.3Transformer架构与LLM的兴起1.4当前AI开发的现状与趋势第二部分:AI开发的核心技术2.1机器学习:AI的基础2.1.1机器学习的类型2.1.2机器学习的流程2.2深度学习:机器学习的进阶2.2.1神经网络基础2.2.2深度学习的关键架构2.3Transformer架构:现代LLM的核
- 区块链架构、跨链和演进
Omni-Space
区块链(BlockChain)区块链架构跨链演进
本文是基于作者近几年来对各种区块链平台理念和技术的研究,结合作者过去十多年的IT经验,审慎思考的结果,文章仅代表作者个人观点。作者会假设读者对各种区块链平台有一定的认知,不会对具体的区块链平台再做详细的介绍。为了从根本上说清楚区块链的架构内涵,作者先概括出区块链的本质,从区块链的本质出发,以发展的眼光给出一个区块链的详见附件架构,并对高阶的各个模块进行详细的说明。还会从区块链跨链的本质出发,说明区
- 【人工智能基础2】机器学习、深度学习总结
roman_日积跬步-终至千里
人工智能习题人工智能机器学习深度学习
文章目录一、人工智能关键技术二、机器学习基础1.监督、无监督、半监督学习2.损失函数:四种损失函数3.泛化与交叉验证4.过拟合与欠拟合5.正则化6.支持向量机三、深度学习基础1、概念与原理2、学习方式3、多层神经网络训练方法一、人工智能关键技术领域基础原理与逻辑机器学习机器学习基于数据,研究从观测数据出发寻找规律,利用这些规律对未来数据进行预测。基于学习模式,机器学习可以分为监督、无监督、强化学习
- 三个简单最短路
L_M_TY
算法最短路DijkstraFloyd
题目一:E-Train题目链接:E-Train给定N个编号为1至N的城市以及M条铁路。第i条铁路连接城市Ai和Bi,每当时间为Ki的倍数时会同时、分别从Ai和Bi发出开往对方的列车,列车从出发至到达花费Ti时间。开始时你在城市X,输出你到达城市Y的最早时间。若无法到达,输出-1。忽略转车所需要的时间。即,当你T时刻到达某个城市时,可以立刻乘坐T时刻从这个城市发出的列车。数据输入范围:2≤N≤105
- 数字电路设计的基本流程
minstbe
数字电路设计fpga开发
数字电路设计的整个流程可以看作是围绕RTL设计这一关键环节展开的完整芯片设计过程。以下是从RTL出发,逐步扩展到其他环节的详细描述:1.系统级设计(System-LevelDesign)目标:确定芯片的总体功能和性能指标。定义芯片的架构,包括模块划分、数据路径、控制路径等。关键内容:需求分析:确定芯片需要完成的任务,例如计算能力、功耗、面积等。系统建模:使用工具(如MATLAB、SystemC)搭
- DeepSeek:全栈开发者视角下的AI革命者
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3人工智能
DeepSeek:全栈开发者视角下的AI革命者写在前面随着人工智能(AI)技术的不断进步,AI已经成为各行各业创新的核心动力。从自动驾驶到智能制造,再到自然语言处理和图像识别,AI正在逐渐渗透并改变着我们的生活和工作方式。DeepSeek,作为AI领域的新兴技术,凭借其独特的技术架构和颠覆性的创新理念,成为了全栈开发者关注的焦点。本文将从全栈开发者的角度出发,详细解析DeepSeek的诞生、技术架
- 模拟退火算法详解
琛哥的程序
算法模拟退火算法机器学习
一、引言模拟退火算法(SimulatedAnnealing,简称SA)是一种通用概率型优化算法,用来在一个大的搜寻空间内找寻问题的最优解。其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。二、算法原理物理退火过程加温过程
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
应用开发
引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的图像处理应用,重点介绍图像卷积、边缘检测等核心算法的实现。我们将从理论基础出发,逐步构建一个完整的图像处理应用,并通过优化技巧提升性能。图像处理基础1.1图像表示在数字图像处理中,图像通常被表示为一个二维矩阵,每个元素代表一个像素的灰度值或颜色值。在HarmonyNex
- 每日总结3.13
labubu12
c语言
第十五届蓝桥杯c++省赛大学B组1.小球反弹问题(√)(镜像扩展空间,没有碰撞反弹,小球一直前进,到达出发点镜像后的点)#includeusingnamespacestd;intmain(){longlongx=343720,y=233333;longlongdx=15,dy=17;longlongt=1;while(1){if((t*dx)%x==0&&(t*dy)%y==0){break;}t
- HarmonyNext实战:基于ArkTS的跨设备分布式数据同步应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的跨设备分布式数据同步应用开发引言在分布式系统的开发中,跨设备数据同步是一个极具挑战性的问题。随着HarmonyOSNext的发布,ArkTS作为其核心开发语言,为开发者提供了强大的分布式能力。本文将深入探讨如何利用ArkTS在HarmonyNext平台上开发一个跨设备分布式数据同步应用。我们将从分布式数据管理的基础理论出发,逐步构建一个完整的应用,涵盖数
- HarmonyNext实战:基于ArkTS的高性能音视频处理应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能音视频处理应用开发引言在音视频处理领域,实时性和性能是关键。随着HarmonyNext生态系统的不断发展,开发者可以利用ArkTS语言构建高性能的音视频处理应用。本文将深入探讨如何利用ArkTS开发一个音视频处理应用,重点介绍音频处理、视频编解码以及实时流媒体传输的实现。我们将从理论基础出发,逐步构建一个完整的应用,并通过优化技巧提升性能。1.音视
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能图像处理应用开发引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的图像处理应用,重点介绍图像卷积、边缘检测等核心算法的实现。我们将从理论基础出发,逐步构建一个完整的图像处理应用,并通过优化技巧提升性能。1.图像处理基础1.1图像表示在数字图像处理中,图像通常被表示为一个
- 从前端视角理解消息队列:核心问题与实战指南
秋水为渡
前端
消息队列(MessageQueue)是现代分布式系统的核心组件之一,它在前后端协作、系统解耦、流量削峰等场景中发挥着重要作用。本文从前端开发者视角出发,解析消息队列的关键问题,并结合实际场景给出解决方案。一、为什么要使用消息队列?1.前端常见场景异步任务处理:用户行为日志上报、实时通知推送流量削峰:应对秒杀活动、大文件上传等瞬时高并发场景系统解耦:前端与后端服务、第三方服务之间的松耦合通信2.前端
- YOLOv8涨点大全总结(源码)
清风AI
深度学习YOLO计算机视觉神经网络人工智能python
(需要全部源码请私信或留言)性能指标在探讨YOLOv8的性能提升之前,我们需要明确评估其性能的主要指标。这些指标不仅是衡量模型优劣的标准,也是后续改进工作的出发点。常见的性能指标包括:指标名称含义mAP5050%交并比阈值下的平均精度mAP50-9550-95%交并比阈值范围内,步长为5%的平均精度Precision预测正确的正样本占总预测正样本的比例Recall预测正确的正样本占实际正样本总数的
- 金融风控可解释性算法安全优化实践
智能计算研究中心
其他
内容概要在金融风险控制领域,算法的可解释性与安全性已成为技术落地的核心挑战。本文从实际业务场景出发,系统性梳理可解释性算法与联邦学习、特征工程的协同框架,通过超参数优化与动态模型评估机制,构建透明化决策链路。在技术实现层面,重点解析支持向量机与随机森林的改进方案,结合数据清洗与标注的标准化流程,强化风险预测模型在准确率、F1值等关键指标的表现,同时兼顾合规性与安全边界的设计要求。提示:金融机构在部
- 如何合理拆分微服务
微服务
**在微服务架构中,要想做到合理拆分,需要重点关注:服务边界划分、业务耦合度控制、数据隔离策略、服务自治能力、团队组织协调。它们共同决定了微服务架构的灵活度与可维护性,其中,服务边界划分是最基础且最关键的一步。它要求我们从业务领域出发,将高度聚合、密切相关的功能抽离成单独服务,避免粗放的“大而全”式切分。在实际落地时,应当以业务语义、数据交互频率等为出发点,力求服务粒度既不会过细导致管理成本飙升,
- 密码学:网络安全的基石与未来
安全
在数字化时代,网络安全已成为全球关注的焦点。无论是个人隐私的保护,还是国家关键基础设施的安全,都离不开密码学这一核心技术。密码学不仅是信息安全的基石,更是现代社会中数据保密性、完整性和可用性的守护者。本文将从密码学的基本原理出发,结合最新技术发展,探讨其在网络安全中的核心作用。一、密码学的基本原理密码学的核心目标是通过数学方法保护信息的机密性、完整性和真实性。它主要分为两大领域:对称加密和非对称加
- 深入解析:大型机器学习模型的基本概念与特点
AI大模型-大飞
机器学习人工智能AI大模型AI神经网络大模型
大模型是指具有大规模参数和复杂计算结构的机器学习模型。本文从大模型的基本概念出发,对大模型领域容易混淆的相关概念进行区分,并就大模型的发展历程、特点和分类、泛化与微调进行了详细解读,供大家在了解大模型基本知识的过程中起到一定参考作用。本文目录如下:·大模型的定义·大模型相关概念区分·大模型的发展历程·大模型的特点·大模型的分类·大模型的泛化与微调1.大模型的定义大模型是指具有大规模参数和复杂计算结
- 深度学习模块缝合教程:从理论到实践
RockLiu@805
深度学习模块机器视觉深度学习人工智能
深度学习模块缝合教程:从理论到实践引言随着深度学习的不断发展,模型的设计与优化成为研究者关注的核心问题之一。如何有效地“缝合”不同模块,以实现更高效的计算和更强大的功能,是当前深度学习研究中的一个重要课题。在本文中,我们将从基础概念出发,详细探讨深度学习模块缝合的方法、技巧及其应用场景。无论是理论深厚的研究者还是实验导向的实践者,都可以从中获得启发。一、深度学习基础知识详解深度学习是人工智能领域的
- 常见的深度学习优化器
青灯剑客
算法python人工智能机器学习自然语言处理深度学习
一直用优化器解决问题,但是没有对它进行一个系统的总结。。不对,系统的总结进行过,只是时过境迁,早已忘却。一、照进我脑海的几个家伙一开始学习的当然是SGD,只是学着学着就忘记了。后来呢,接触到网上介绍的几种常用的优化器,看着原理挺给力,可是记了好几次都记不住。直到遇到《百面机器学习》,它从最基本的原理出发,给了我一点灵感。(1)几种常用的优化器,详情见这里链接34(2)二、以为自己遇见了大海老师说,
- JavaScript性能优化实战:从瓶颈分析到高效编码策略
AAEllisonPang
Java数据库
一、性能瓶颈分析:从问题出发1.1常见性能问题类型渲染阻塞:同步脚本加载导致DOMContentLoaded延迟内存泄漏:未解绑的事件监听、闭包引用残留重复计算:高频触发的回调函数无节制运算布局抖动:强制同步布局(ForcedSynchronousLayout)网络瓶颈:未优化的资源加载策略典型案例:某电商网站商品筛选功能,用户选择规格时界面卡顿。经分析发现每次选择都会触发全量DOM重新渲染,导致
- 功能测试和接口测试详解
测试老哥
功能测试python软件测试自动化测试接口测试测试用例测试工具
点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快本文主要分为两个部分:第一部分:主要从问题出发,引入接口测试的相关内容并与前端测试进行简单对比,总结两者之前的区别与联系。但该部分只交代了怎么做和如何做?并没有解释为什么要做?第二部分:主要介绍为什么要做接口测试,并简单总结接口持续集成和接口质量评估相关内容。第一部分首先,在做接口测试的过程中,经常有后端开发会问:后端接口都测试什么?怎么
- 新手PCB打样避坑指南:如何选择高性价比厂商
lboyj
人工智能大数据
在电子硬件开发中,PCB打样是验证设计可行性的关键一步。然而,面对市场上数百家PCB厂商,新手往往陷入“选厂难”的困境:既要保证质量,又要控制成本,还要兼顾交期。本文将从核心需求出发,结合行业口碑与技术实测,深度解析猎板PCB等优质厂商的优势,助你快速锁定匹配项目需求的合作伙伴。一、新手选厂的核心考量:从“踩雷”到“精准匹配”1.**工艺能力:决定设计落地的天花板**新手常误以为“低价=划算”,却
- 29.代码随想录算法训练营第二十九天|134. 加油站,135. 分发糖果,860. 柠檬水找零,406. 根据身高重建队列
白鹭鸣鸣!
算法java
29.代码随想录算法训练营第二十九天|134.加油站,135.分发糖果,860.柠檬水找零,406.根据身高重建队列134.加油站-力扣(LeetCode)在一条环路上有n个加油站,其中第i个加油站有汽油gas[i]升。你有一辆油箱容量无限的的汽车,从第i个加油站开往第i+1个加油站需要消耗汽油cost[i]升。你从其中的一个加油站出发,开始时油箱为空。给定两个整数数组gas和cost,如果你可以
- 【从零开始学习JAVA 】This关键字详解
Cools0613
从0开始学Java学习
前言:相信大家在进入JAVA面向对象编程篇章以后,多多少少都见过This关键字,而他的指向很多人总是傻傻搞不清楚,今天我们将从This指针的本质出发,深度剖析This关键字的指向规则。This关键字:作用:1.引用当前对象:在类中的方法中,this用来引用当前对象。例如,通过this可以引用当前对象的成员变量,调用当前对象的方法。publicclassPerson{privateStringnam
- 每天一道算法题【蓝桥杯】【最小路径和】
桦0
题解算法蓝桥杯c++leetcode
思路使用dp表解决问题使用DP表的思路分析在解决最小路径和问题时,动态规划(DP)是一种非常有效的方法。以下是使用DP表的详细思路分析:问题描述给定一个mxn的网格grid,其中每个单元格包含一个非负整数,表示从该单元格出发的路径成本。你需要找到从左上角(0,0)到右下角(m-1,n-1)的路径,使得路径上的成本总和最小。你每次只能向右或向下移动。DP表的定义定义一个二维数组dp,其中dp[i][
- 从原理和公式出发:python实现One_Way_ANOVA
^哪来的&永远~
python算法概率论
文章目录目的:python实现onewayANOVA单因素方差分析1.代码流程2.python代码实现0主要的函数1加载数据2查看数据统计结果3数据处理及可视化4方差分析4.1模型拟合4.2单因素方差分析5PostHoct-test组间比较分析6根据定义自行分解计算对比调用函数的结果7获取F分布对应的P值3.方差分析公式及原理参考目的:python实现onewayANOVA单因素方差分析方差分析(
- HarmonyNext实战:基于ArkTS12+的高性能分布式任务调度系统开发
harmonyos-next
HarmonyNext实战:基于ArkTS12+的高性能分布式任务调度系统开发引言在HarmonyNext生态系统中,分布式任务调度是一个关键的技术领域,尤其是在多设备协同场景下。本文将深入探讨如何利用ArkTS12+语法开发一个高性能的分布式任务调度系统。我们将从基础概念出发,逐步构建一个完整的任务调度模块,涵盖任务分发、负载均衡、故障恢复等关键环节。通过本教程,您将掌握如何在HarmonyNe
- HarmonyNext实战案例:基于ArkTS12+的高性能图像处理应用开发
harmonyos-next
HarmonyNext实战案例:基于ArkTS12+的高性能图像处理应用开发引言在HarmonyNext生态系统中,图像处理是一个重要的应用领域。本文将深入探讨如何使用ArkTS12+开发一个高性能的图像处理应用。我们将从基础概念出发,逐步构建一个完整的图像处理应用,涵盖图像加载、处理、显示等核心功能。通过本案例,读者将掌握ArkTS12+在图像处理中的应用技巧,并能够独立开发类似的应用。1.环境
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1