目录
1 背景概述
2 问题详情
3 名词解释
4 题目及数据
5 Python&Matlab代码下载
我国地域辽阔,自然条件复杂,因此灾害性天气种类繁多,地区差异大。其中,雷雨大风、冰雹、龙卷、短时强降水等强对流天气是造成经济损失、危害生命安全最严重的一类灾害性天气[1]。以2022年为例,我国强对流天气引发风雹灾害造成的死亡失踪人数和直接经济损失分别占73%和69%。由于强对流天气具有突发性和局地性强、生命史短、灾害重等特点,其短时(0~12小时)和临近(0~2小时)预报通常也是天气预报业务中的难点。
传统强对流天气临近预报主要依靠雷达等观测资料,结合风暴识别、追踪技术进行雷达外推预报,即通过外推的方法得到未来时刻的雷达反射率因子,并进一步使用雷达反射率因子和降水之间的经验性关系(即Z-R关系)估计未来时刻的降水量[2]。近年来,随着大数据的积累和计算机算力的发展,人工智能及深度学习技术发展迅速。深度学习方法是一类数据驱动的方法,理论上其性能随着训练数据量增大而提升,因此很适合有大量雷达观测数据积累的短临预报领域。目前国际上主要有两类基于深度学习的短临预报模型,一类基于卷积神经网络(Convolutional Neural Networks, CNNs),如U-Net等模型[3];另一类基于循环神经网络(Recurrent Neural Networks, RNNs),如ConvLSTM、DGMR等模型[4, 5]。
雨滴在降落过程中受到空气阻力作用,形状可呈扁球形或馒头形,并且一般来说越大的雨滴越扁。因此,雨滴对水平偏振(电场振动方向在水平面内)的电磁波和垂直偏振(电场振动方向在垂直平面内)的电磁波的反射特征是不一样的。传统雷达仅能发射和接收一个偏振方向上的电磁波,而新型的双偏振雷达可同时发射和接收在水平和垂直两个偏振方向的电磁波,可以根据两个偏振方向上的回波的强度差别、相位关系等信息获得降水粒子的大小、相态、含水量等信息[6],这些信息被统称为微物理信息。近年来研究表明,双偏振雷达变量反映的微物理信息里包含了对流系统的演变状态、空间动力结构等关键信息[7, 8]。因此,双偏振雷达变量的应用,理论上对于强对流预报有重要意义。
为了更好地应用双偏振雷达改进强对流降水短临预报,请回答以下问题:
链接:https://pan.baidu.com/s/1cLfyT3KNOzgOeb7YkgAYPA
提取码:kl75
--来自百度网盘超级会员V4的分享
回复:【2023华为杯F题】强对流降水临近预报