云原生Kubernetes:K8S存储卷

目录

一、理论

1.存储卷

2.emptyDir 存储卷

3.hostPath卷

4.NFS共享存储

5.PVC 和 PV

6.静态创建PV

7.动态创建PV

二、实验

 1.emptyDir 存储卷

2.hostPath卷

3.NFS共享存储

4.静态创建PV

5.动态创建PV

三、问题

1.生成pod一直pending

2.shoumount -e未显示共享目录

3.静态创建pv 报错

4.使用 Deployment 来创建 NFS Provisioner报错

5.容器挂载报错

6.镜像拉取失败

7.生成PVC资源报错

8.Linux客户端挂载NFS共享报错

四、总结


一、理论

1.存储卷

(1)概念

容器磁盘上的文件的生命周期是短暂的,这就使得在容器中运行重要应用时会出现一些问题。首先,当容器崩溃时, kubelet会重启它,但是容器中的文件将丢失一容器以干净的状态(镜像最初的状态)重新启动。

其次,在Pod中同时运行多个容器时,这些容器之间通常需要共享文件。Kubernetes中的Volume抽象就很好的解决了这些问题。Pod中的容器通过Pause容器共享Volume。


云原生Kubernetes:K8S存储卷_第1张图片

(2)分类

本地:例如hostPath、emptyDir;
网络:例如NFS、Ceph、GlusterFS;
公有云:例如AWS EBS;
k8s资源:例如configmap、secret。

2.emptyDir 存储卷

(1)作用

emptyDir存储卷当Pod被分配给节点时,首先创建emptyDir卷,并且只要该Pod在该节点上运行,该卷就会存在。正如卷的名字所述,它最初是空的。Pod中的容器可以读取和写入emptyDir卷中的相同文件,尽管该卷可以挂载到每个容器中的相同或不同路径上。当出于任何原因从节点中删除Pod时, emptyDir中的数据将被永久删除。

云原生Kubernetes:K8S存储卷_第2张图片

(2)示例

[root@master demo]# mkdir /opt/volumes
[root@master demo]# cd /opt/volumes/
[root@master volumes]# vim pod-emptydir.yaml
apiVersion: v1
kind: Pod
metadata:
  name: pod-emptydir
  namespace: default
  labels:
    app: myapp
    tier: frontend
spec:
  containers:
  - name: myapp
    image: ikubernetes/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
    #定义容器挂载的内容
    volumeMounts:
    #使用的存储卷名称,如果跟下面的volume字段name值相同,则表示使用volume的这个卷
    - name: html
      #挂载到容器的哪个目录
      mountPath: /usr/share/nginx/html/
  - name: busybox
    image: busybox:latest
    imagePullPolicy: IfNotPresent
    volumeMounts:
    - name: html
      #在容器内定义挂载存储名称和挂载路径
      mountPath: /data/
    command: ['/bin/sh','-c','while true;do echo $(date) >> /data/index.html;sleep 5;done']
  #定义存储卷
  volumes:
  #定义存储卷的名称
  - name: html
    #定义存储卷的类型
    emptyDir: {}
[root@master volumes]# kubectl  apply -f pod-emptydir.yaml

[root@master volumes]# kubectl get pods -o wide 
NAME           READY   STATUS    RESTARTS   AGE   IP             NODE     NOMINATED NODE   READINESS GATES
pod-emptydir   2/2     Running   0          3s    10.244.1.146   node01              

#在上面定义了两个容器,其中一个容器输入日期到index.html中,然后验证范围nginx的htmnl是否可以获取日期
#同时,在进入两个容器里,查看挂载数据卷的目录的数据,以验证两个容器之间挂载的emptyDir实现共享

[root@master volumes]# curl  10.244.1.146
wed Sep 20 06:07:26 UTC 2023
Wed Sep 20 06:07:31 UTC 2023
Wed Sep 20 06:07:36 UTC 2023
Wed Sep 20 06:07:41 UTC 2023
Wed Sep 20 06:07:46 UTC 2023
Wed Sep 20 06:07:51 UTC 2023

[root@master volumes]# kubectl  exec  -it  pod-emptydir -c busybox sh
/ # cat /data/index.html 
wed Sep 20 06:07:26 UTC 2023
Wed Sep 20 06:07:31 UTC 2023
Wed Sep 20 06:07:36 UTC 2023
Wed Sep 20 06:07:41 UTC 2023
Wed Sep 20 06:07:46 UTC 2023
Wed Sep 20 06:07:51 UTC 2023
[root@master volumes]# kubectl  exec  -it  pod-emptydir -c myapp sh
/ # cat /usr/share/nginx/html/index.html 
Wed Sep 20 06:07:26 UTC 2023
Wed Sep 20 06:07:31 UTC 2023
Wed Sep 20 06:07:36 UTC 2023
Wed Sep 20 06:07:41 UTC 2023
Wed Sep 20 06:07:46 UTC 2023
Wed Sep 20 06:07:51 UTC 2023
Wed Sep 20 06:07:56 UTC 2023
Wed Sep 20 06:08:01 UTC 2023
Wed Sep 20 06:08:06 UTC 2023
Wed Sep 20 06:08:11 UTC 2023

3.hostPath卷

(1)作用

hostPath卷将node节点的文件系统中的文件或者目录挂载到集群中。

hostPath可以实现持久存储,但是在node节点故障时,也会导致数据的丢失。

云原生Kubernetes:K8S存储卷_第3张图片

(2)示例

#在node01节点上创建挂载目录
[root@node01 ~]#  mkdir -p /data/pod/volume1
[root@node01 ~]#  echo 'node01.myweb.com' > /data/pod/volume1/index.html

#在node02 节点上创建挂载目录
[root@node02 ~]#  mkdir -p /data/pod/volume1
[root@node02 ~]#  echo 'node02.myweb.com' > /data/pod/volume1/index.html
[root@master volumes]# vim pod-hostpath.yaml
apiVersion: v1
kind: Pod
metadata:
  name: pod-hostpath
  namespace: default
spec:
  containers:
  - name: myapp
    image: ikubernetes/myapp:v1
    #定义容器你挂载内容
    volumeMounts:
    #使用的存储卷名称,如果跟下面volume字段name值相同,则表示使用volume的这个存储卷
    - name: html
      #挂载值容器中哪个目录
      mountPath: /usr/share/nginx/html
      readOnly: false
  #volumes字段定义了paues容器关联的宿主机或分布式文件系统存储卷    
  volumes:
   #存储卷名称
    - name: html
      #路径,为宿主机存储路径
      hostPath:
        #在宿主机上目录的路径
        path: /data/pod/volume1
        #定义类型,这表示如果宿主机没有此目录则会自动创建
        type: DirectoryOrCreate                              
[root@master volumes]# kubectl apply -f pod-hostpath.yaml 

[root@master volumes]# kubectl  get pods -o wide
NAME           READY   STATUS    RESTARTS   AGE   IP             NODE     NOMINATED NODE   READINESS GATES
pod-hostpath   1/1     Running   0          14m   10.244.2.112   node02              
#访问测试
[root@master volumes]# curl 10.244.2.112
node02.myweb.com


#删除pod后,再重建,验证是否依旧可以访问原来的内容
[root@master volumes]# kubectl delete -f pod-hostpath.yaml 
pod "pod-hostpath" deleted
[root@master volumes]# kubectl apply -f pod-hostpath.yaml 
pod/pod-hostpath created
[root@master volumes]# kubectl  get pods -o wide
NAME           READY   STATUS    RESTARTS   AGE   IP             NODE     NOMINATED NODE   READINESS GATES
pod-hostpath   1/1     Running   0          6s    10.244.1.147   node01              
[root@master volumes]# curl 10.244.1.147
node01.myweb.com

4.NFS共享存储

(1)安装配置nfs服务

云原生Kubernetes:K8S存储卷_第4张图片

#在stor01(192.168.204.177)节点上安装nfs,并配置nfs服务
mkdir /data/volumes -p
echo 'this is david' >> /data/volumes/index.html
chmod 777 /data/volumes/

yum -y install nfs-utils rpcbind

#给204网段用户赋予读写权限、同步内容、不压缩共享对象root用户权限
vim /etc/exports
/data/volumes 192.168.204.0/24(rw,no_root_squash,sync)

systemctl  start  rpcbind nfs

#监听服务
[root@stor01 ~]# ss -antp | grep rpcbind
LISTEN     0      128          *:111                      *:*                   users:(("rpcbind",pid=37036,fd=8))
LISTEN     0      128         :::111                     :::*                   users:(("rpcbind",pid=37036,fd=11))


showmount -e 192.168.204.177
Export list for host10:
/data/volumes 192.168.204.0/24

#所有节点配置hosts映射,或者配置DNS解析
echo '192.168.204.177 stor01' >> /etc/hosts

(2)master 节点操作

apiVersion: v1
kind: Pod
metadata:
  name: pod-vo1-nfs
  namespace: default
spec:
  #指定pod到 node01节点
  nodeName: node01
  containers:
  - name: myapp
    image: ikubernetes/myapp:v1
    volumeMounts:
    - name: html
      mountPath: /usr/share/nginx/html
  volumes:
    - name: html
      nfs:
        path: /data/volumes
        server: stor01
[root@master volumes]# kubectl apply -f pod-nfs-vo1.yaml 
pod/pod-vo1-nfs created
[root@master volumes]# kubectl get pods -o wide
NAME          READY   STATUS    RESTARTS   AGE   IP             NODE     NOMINATED NODE   READINESS GATES
pod-vo1-nfs   1/1     Running   0          8s    10.244.1.148   node01              
#访问cluster ip 
[root@master volumes]# curl 10.244.1.148
this is david
[root@master volumes]# kubectl delete pod pod-vo1-nfs 
pod "pod-vo1-nfs" deleted

[root@master volumes]# vim pod-nfs-vo1.yaml
apiVersion: v1
kind: Pod
metadata:
  name: pod-vo1-nfs
  namespace: default
spec:
  #指定pod在node02节点
  nodeName: node02
  containers:
  - name: myapp
    image: ikubernetes/myapp:v1
    volumeMounts:
    - name: html
      mountPath: /usr/share/nginx/html
  volumes:
    - name: html
      nfs:
        path: /data/volumes
        server: stor01
[root@master volumes]# kubectl apply -f pod-nfs-vo1.yaml 
pod/pod-vo1-nfs created
[root@master volumes]# kubectl get pods -o wide
NAME          READY   STATUS    RESTARTS   AGE   IP             NODE     NOMINATED NODE   READINESS GATES
pod-vo1-nfs   1/1     Running   0          3s    10.244.2.114   node02              
#访问测试
[root@master volumes]# curl  10.244.2.114
this is david

5.PVC 和 PV

(1)概念

PV 全称叫做 Persistent Volume,持久化存储卷。它是用来描述或者说用来定义一个存储卷的,这个通常都是由运维工程师来定义。

PVC 的全称是 Persistent Volume Claim,是持久化存储的请求。它是用来描述希望使用什么样的或者说是满足什么条件的 PV 存储。

PVC 的使用逻辑:在 Pod 中定义一个存储卷(该存储卷类型为 PVC),定义的时候直接指定大小,PVC 必须与对应的 PV 建立关系,PVC 会根据配置的定义去 PV 申请,而 PV 是由存储空间创建出来的。PV 和 PVC 是 Kubernetes 抽象出来的一种存储资源。
 

云原生Kubernetes:K8S存储卷_第5张图片

一个PV可以个一个或多个POD使用,PV是k8s集群里专用的存储资源,是逻辑划分存储设备空间的资源对象。存储资源要提供存储空间给存储资源使用,不能凭空出现
真正提供存储空间的是存储设备,如硬盘挂载的目录,nfs共享的目录,ceph分布式存储等
我们作为K8S集群管理员,可以在K8S集群中创建PV,再从存储设备划分存储空间给PV
然后我的POD想引用哪个PV,得先定义一个PVC,用来描述希望使用什么样的或者说是满足什么条件的 PV 存储,比如多大存储空间,是专用,是一对一,还是一对多
POD会根据PVC去找符合条件的PV进行绑定,最后给POD挂载使用
 

(2) StorageClass

上面介绍的PV和PVC模式是需要运维人员先创建好PV,然后开发人员定义好PVC进行一对一的Bond,但是如果PVC请求成千上万,那么就需要创建成千上万的PV,对于运维人员来说维护成本很高,Kubernetes提供一种自动创建PV的机制,叫StorageClass,它的作用就是创建PV的模板。

创建 StorageClass 需要定义 PV 的属性,比如存储类型、大小等;另外创建这种 PV 需要用到的存储插件,比如 Ceph 等。 有了这两部分信息,Kubernetes 就能够根据用户提交的 PVC,找到对应的 StorageClass,然后 Kubernetes 就会调用 StorageClass 声明的存储插件,自动创建需要的 PV 并进行绑定。
 

(3)动态创建PV

使用StorageClass 引用某一存储设备的存储卷插件,通过调用存储卷插件去到存储设备中动态创建符合PVC需求的存储资源,然后PV和PVC进行绑定,这样Pod就可以使用PV的存储空间

PV是集群中的资源。 PVC是对这些资源的请求,也是对资源的索引检查。

云原生Kubernetes:K8S存储卷_第6张图片

(4)PV和PVC之间的相互作用遵循的生命周期

云原生Kubernetes:K8S存储卷_第7张图片

PV和PVC之间的相互作用遵循这个生命周期:
Provisioning(配置)—> Binding(绑定)—> Using(使用)—> Releasing(释放) —> Recycling(回收)

●Provisioning,即 PV 的创建,可以直接创建 PV(静态方式),也可以使用 StorageClass 动态创建
●Binding,将 PV 分配给 PVC
●Using,Pod 通过 PVC 使用该 Volume,并可以通过准入控制StorageProtection(1.9及以前版本为PVCProtection) 阻止删除正在使用的 PVC
●Releasing,Pod 释放 Volume 并删除 PVC
●Reclaiming,回收 PV,可以保留 PV 以便下次使用,也可以直接从云存储中删除

PV 的状态

根据这 5 个阶段,PV 的状态有以下 4 种:

●Available(可用):表示可用状态,还未被任何 PVC 绑定
●Bound(已绑定):表示 PV 已经绑定到 PVC
●Released(已释放):表示 PVC 被删掉,但是资源尚未被集群回收
●Failed(失败):表示该 PV 的自动回收失败

一个PV从创建到销毁的具体流程

1、一个PV创建完后状态会变成Available,等待被PVC绑定。

2、一旦被PVC邦定,PV的状态会变成Bound,就可以被定义了相应PVC的Pod使用。

3、Pod使用完后会释放PV,PV的状态变成Released。

4、变成Released的PV会根据定义的回收策略做相应的回收工作。有三种回收策略,Retain、Delete和Recycle。Retain就是保留现场,K8S集群什么也不做,等待用户手动去处理PV里的数据,处理完后,再手动删除PV。Delete策略,K8S会自动删除该PV及里面的数据。Recycle方式,K8S会将PV里的数据删除,然后把PV的状态变成Available,又可以被新的PVC绑定使用。

(5)静态创建pv和pvc资源由pod运用过程

如图所示我们将选择一台k8s集群之外的服务器作为NFS共享存储服务器,并且按照图中的规格

创建pv,再由k8s集群创建pv资源和pvc资源,最后将其挂载在pod上进行使用

云原生Kubernetes:K8S存储卷_第8张图片

(6) K8S支持的存储卷的访问模式

云原生Kubernetes:K8S存储卷_第9张图片

其中 × 表示支持,- 表示不支持

(7)使用explain 查看pv的定义方式

查看pv的定义方式:

kubectl  explain pv  #查看pv的定义方式

FIELDS:
  apiVersion
  kind
  metadata
  spec

云原生Kubernetes:K8S存储卷_第10张图片

查看pv定义的规格:

[root@master ~]# kubectl  explain pv.spec
spec:
  nfs (定义存储类型)
    path (定义挂载卷路径)
    server (定义服务器名称)
  accessModes (定义访问模型,有以下三种访问模型,以列表的方式存在,也就是说可以定义多个访问模式)
    ReadwriteOnce (RWO) 单节点读写
    ReadonlyMany (ROX) 多节点只读
    ReadwriteMany (RWX) 多节点读写
  capacity (定义PV空间的大小)
    storage (指定大小)

云原生Kubernetes:K8S存储卷_第11张图片云原生Kubernetes:K8S存储卷_第12张图片云原生Kubernetes:K8S存储卷_第13张图片

其中,访问模式有:

ReadWriteOnce
卷可以被一个节点以读写方式挂载。 ReadWriteOnce 访问模式也允许运行在同一节点上的多个 Pod 访问卷。
ReadOnlyMany
卷可以被多个节点以只读方式挂载。
ReadWriteMany
卷可以被多个节点以读写方式挂载。

(8) 使用explain 查看pvc的定义方式

查看pvc的定义方式:

kubectl  explain  pvc  #查看pvc的定义方式
KIND:  PersistentVolumeClaim
VERSION:  v1
FIELDS:
    apiVersion: 
    kind 
    metadata 
    spec 

云原生Kubernetes:K8S存储卷_第14张图片

查看pvc的规格:

kubectl  explain pvc.spec  #查看pvc的规格

spec:
	accessModes (定义访问模式,必须是pv的访问模式的子集)
	resources (定义申请资源的大小)
	  requests:  
	  storage:

云原生Kubernetes:K8S存储卷_第15张图片

6.静态创建PV

(1)在NFS主机上创建共享目录,并且进行exportfs发布

[root@nfs ~]# yum -y install nfs-utils rpcbind
[root@nfs ~]# mkdir -p /data/volumes/v{1..5}
[root@nfs ~]# ls -R /data/
[root@nfs ~]# chmod  -R 777 /data/*

#配置nfs共享的目录
[root@nfs ~]# for i in {1..5}
do 
echo "/data/volumes/v$i 192.168.204.0/24(rw,no_root_squash,sync)" >> /etc/exports
done 


#写入网页内容
[root@nfs ~]# for i in {1..5}
do
echo "this is pv00$i" > /data/volumes/v$i/index.html
done



[root@nfs ~]# systemctl  start rpcbind
[root@nfs ~]# systemctl start nfs
[root@nfs ~]# exportfs  -arv
[root@nfs ~]# showmount  -e
//其他两个node节点能不能看到
showmount -e 192.168.204.177

(2)定义pv

定义5个 pv,并且定义挂载的路径及访问模式,pv划分大小

[root@master ~]# vim pv-demo.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv001
  labels:
    name: pv001
spec:
  nfs:
    path: /data/volumes/v1
    server: stor01
  accessModes: 
    - ReadWriteMany
    - ReadWriteOnce
  capacity:
    storage: 1Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv002
  labels:
    name: pv002
spec:
  nfs:
    path: /data/volumes/v2
    server: stor01
  accessModes: 
    - ReadWriteOnce
  capacity:
    storage: 2Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv003
  labels:
    name: pv003
spec:
  nfs:
    path: /data/volumes/v3
    server: stor01
  accessModes: 
    - ReadWriteMany
    - ReadWriteOnce
  capacity:
    storage: 2Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv004
  labels:
    name: pv004
spec:
  nfs:
    path: /data/volumes/v4
    server: stor01
  accessModes: 
    - ReadWriteMany
    - ReadWriteOnce
  capacity:
    storage: 4Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv005
  labels:
    name: pv005
spec:
  nfs:
    path: /data/volumes/v5
    server: stor01
  accessModes: 
    - ReadWriteMany
    - ReadWriteOnce
  capacity:
    storage: 5Gi
[root@master ~]# kubectl  apply  -f pv-demo.yaml 
[root@master ~]# kubectl  get pv

(3) 定义pvc

情况1

pvc请求的 访问模式accessMode 及 storage大小(capacity 栏)都完全符合

[root@master ~]# vim pod-vol-pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mypvc
  namespace: default
spec:
  accessModes:
  - ReadWriteMany
  resources:
    requests:
      storage: 2Gi
---
apiVersion: v1
kind: Pod
metadata:
  name: pod-vo1-pvc
  namespace: default
spec:
  containers:
  - name: myapp
    image: ikubernetes/myapp:v1
    volumeMounts:
    - name: html
      mountPath: /usr/share/nginx/html
  volumes:
  - name: html
    persistentVolumeClaim:
       claimName: mypvc
[root@master ~]# kubectl  apply -f  pod-vol-pvc.yaml 
persistentvolumeclaim/mypvc created
pod/pod-vo1-pvc created
[root@master ~]# kubectl  get pods,pv -o wide

[root@master ~]# curl 10.244.1.151
this is pv003

情况2

在访问模式符合 的情况下,大小不符合,则会再所以大于请求大小的pv中,选择大小最接近的

[root@master ~]# vim   pod-vol-pvc.yaml 

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mypvc-test02
  namespace: default
spec:
  accessModes:
  - ReadWriteMany
  resources:
    requests:
      storage: 2Gi
---
apiVersion: v1
kind: Pod
metadata:
  name: pod-vo2-pvc
  namespace: default
spec:
  containers:
  - name: myapp
    image: ikubernetes/myapp:v1
    volumeMounts:
    - name: html
      mountPath: /usr/share/nginx/html
  volumes:
  - name: html
    persistentVolumeClaim:
       claimName: mypvc-test02
[root@master ~]# kubectl  apply  -f  pod-vol-pvc.yaml 
persistentvolumeclaim/mypvc-test02 created
pod/pod-vo2-pvc created
[root@master ~]# kubectl  get pods,pv,pvc  -o wide
[root@master ~]# curl 10.244.2.117
this is pv004

情况3

在访问模式不符合,或者大小没有满足的(都效于),则pod和pvc都处于pending状态

[root@master ~]# vim   pod-vol-pvc.yaml 
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mypvc-test03
  namespace: default
spec:
  accessModes:
  - ReadWriteMany
  resources:
    requests:
      storage: 7Gi
---
apiVersion: v1
kind: Pod
metadata:
  name: pod-vo3-pvc
  namespace: default
spec:
  containers:
  - name: myapp
    image: ikubernetes/myapp:v1
    volumeMounts:
    - name: html
      mountPath: /usr/share/nginx/html
  volumes:
  - name: html
    persistentVolumeClaim:
       claimName: mypvc-test03
[root@master ~]# kubectl  apply  -f  pod-vol-pvc.yaml 
persistentvolumeclaim/mypvc-test03 created
pod/pod-vo3-pvc created
[root@master ~]# kubectl  get pods,pv,pvc  -o wide

[root@master ~]# kubectl  get pods,pv,pvc  -o wide

[root@master ~]# kubectl  describe  pod pod-vo3-pvc 

情况4

使用多主机读写 RWX (ReadWriteMany) 模式,将新创建的pod 加入到已有的pvc 中

[root@master ~]# vim pod-vol-pvc.yaml
apiVersion: v1
kind: Pod
metadata:
  name: pod-vo4-pvc
  namespace: default
spec:
  containers:
  - name: myapp
    image: ikubernetes/myapp:v1
    volumeMounts:
    - name: html
      mountPath: /usr/share/nginx/html
  volumes:
  - name: html
    persistentVolumeClaim:
       claimName: mypvc-test02
[root@master ~]# kubectl  apply  -f  pod-vol-pvc.yaml 
pod/pod-vo4-pvc created
[root@master ~]# kubectl  get pods,pv,pvc  -o wide
[root@master ~]# curl  10.244.1.152
this is pv004

(4)删除pvc绑定

[root@master ~]# kubectl  describe  persistentvolumeclaims mypvc-test02
....
Mounted By:    pod-vo2-pvc
               pod-vo4-pvc

.....

#先删除使用这个pvc的所有pod
[root@master ~]# kubectl delete  pod pod-vo{2,4}-pvc
pod "pod-vo2-pvc" deleted
pod "pod-vo4-pvc" deleted


#再删除pvc
[root@master ~]# kubectl delete  persistentvolumeclaims mypvc-test02
persistentvolumeclaim "mypvc-test02" deleted


#查看发现pvc确实被删除了,但是,相应的pv处于Released状态,此时pv无法被新pvc绑定
[root@master ~]# kubectl  get pods,pv,pvc  -o wide
NAME              READY   STATUS    RESTARTS   AGE   IP       NODE     NOMINATED NODE   READINESS GATES
persistentvolume/pv004   4Gi        RWO,RWX        Retain           Released    default/mypvc-test02                           73m   Filesystem

使用 edit 在线对pv 资源进行编辑,删除claiRef段落。保存后,通过命令查看,其状态就自动变为了Available,PV即可重新使用

[root@master ~]# kubectl  edit  persistentvolume pv004
...
 #删除
  claimRef:
    apiVersion: v1
    kind: PersistentVolumeClaim
    name: mypvc-test02
    namespace: default
    resourceVersion: "242922"
    uid: 95ef0c00-754e-4a8e-81c3-f8ee4d5f9824
.....
[root@master ~]# kubectl  get pods,pv,pvc  -o wide

NAME                     CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM           STORAGECLASS   REASON   AGE   VOLUMEMODE

persistentvolume/pv004   4Gi        RWO,RWX        Retain           Available                                           81m   Filesystem

7.动态创建PV

(1)StorageClass + nfs-client-provisioner

StorageClass + nfs-client-provisioner的理解
上面介绍的PV和PVC模式是需要运维人员先创建好PV,然后开发人员定义好PVC进行一对一的Bond,但是如果PVC请求成千上万,那么就需要创建成千上万的PV,对于运维人员来说维护成本很高,Kubernetes提供一种自动创建PV的机制,叫StorageClass,它的作用就是创建PV的模板。

云原生Kubernetes:K8S存储卷_第16张图片

创建 StorageClass 需要定义 PV 的属性,比如存储类型、大小等;另外创建这种 PV 需要用到的存储插件,比如 Ceph 等。 有了这两部分信息,Kubernetes 就能够根据用户提交的 PVC,找到对应的 StorageClass,然后 Kubernetes 就会调用 StorageClass 声明的存储插件,自动创建需要的 PV 并进行绑定。

云原生Kubernetes:K8S存储卷_第17张图片

卷插件称为 Provisioner(存储分配器),NFS 使用的是 nfs-client,这个外部卷插件会使用已经配置好的 NFS 服务器自动创建 PV。
Provisioner:用于指定 Volume 插件的类型,包括内置插件(如 kubernetes.io/aws-ebs)和外部插件(如 external-storage 提供的 ceph.com/cepfs)。
云原生Kubernetes:K8S存储卷_第18张图片

(2)在NFS服务器配置nfs服务

//nfs服务器
mkdir /opt/k8s
chmod 777 /opt/k8s/
vim /etc/exports
/opt/k8s 192.168.204.0/24(rw,sync,no_root_squash)

[root@nfs ~]# systemctl  restart rpcbind
[root@nfs ~]# systemctl restart nfs
[root@nfs ~]# exportfs  -arv
[root@nfs ~]# showmount  -e

(3)创建 Service Account,用来管理 NFS Provisioner 在 k8s 集群中运行的权限和动态规则

//master节点
cd pv/
mkdir sc
cd sc/

(4)创建 Service Account,用来管理 NFS Provisioner 在 k8s 集群中运行的权限,设置 nfs-client 对 PV,PVC,StorageClass 等的规则

vim nfs-client-rbac.yaml
#创建 Service Account 账户,用来管理 NFS Provisioner 在 k8s 集群中运行的权限
apiVersion: v1
kind: ServiceAccount
metadata:
  name: nfs-client-provisioner
---
#创建集群角色
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: nfs-client-provisioner-clusterrole
rules:
  - apiGroups: [""]
    resources: ["persistentvolumes"]
    verbs: ["get", "list", "watch", "create", "delete"]
  - apiGroups: [""]
    resources: ["persistentvolumeclaims"]
    verbs: ["get", "list", "watch", "update"]
  - apiGroups: ["storage.k8s.io"]
    resources: ["storageclasses"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["events"]
    verbs: ["list", "watch", "create", "update", "patch"]
  - apiGroups: [""]
    resources: ["endpoints"]
    verbs: ["create", "delete", "get", "list", "watch", "patch", "update"]
---
#集群角色绑定
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: nfs-client-provisioner-clusterrolebinding
subjects:
- kind: ServiceAccount
  name: nfs-client-provisioner
  namespace: default
roleRef:
  kind: ClusterRole
  name: nfs-client-provisioner-clusterrole
  apiGroup: rbac.authorization.k8s.io
kubectl apply -f nfs-client-rbac.yaml

(5)使用 Deployment 来创建 NFS Provisioner

NFS Provisione(即 nfs-client),有两个功能:一个是在 NFS 共享目录下创建挂载点(volume),另一个则是将 PV 与 NFS 的挂载点建立关联。

由于 1.20 版本启用了 selfLink,所以 k8s 1.20+ 版本通过 nfs provisioner 动态生成pv会报错,解决方法如下:
 

cd /etc/kubernetes/manifests/
vim /etc/kubernetes/manifests/kube-apiserver.yaml
spec:
  containers:
  - command:
    - kube-apiserver
    - --feature-gates=RemoveSelfLink=false       #添加这一行
    - --advertise-address=192.168.80.20
......

kubectl apply -f /etc/kubernetes/manifests/kube-apiserver.yaml
kubectl delete pods kube-apiserver -n kube-system 
kubectl get pods -n kube-system | grep apiserver


创建 NFS Provisioner

vim nfs-client-provisioner.yaml
kind: Deployment
apiVersion: apps/v1
metadata:
  name: nfs-client-provisioner
spec:
  replicas: 1
  selector:
    matchLabels:
      app: nfs-client-provisioner
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: nfs-client-provisioner
    spec:
      serviceAccountName: nfs-client-provisioner   	  #指定Service Account账户
      containers:
        - name: nfs-client-provisioner
          image: quay.io/external_storage/nfs-client-provisioner:latest
          imagePullPolicy: IfNotPresent
          volumeMounts:
            - name: nfs-client-root
              mountPath: /persistentvolumes
          env:
            - name: PROVISIONER_NAME
              value: nfs-storage       #配置provisioner的Name,确保该名称与StorageClass资源中的provisioner名称保持一致
            - name: NFS_SERVER
              value: stor01           #配置绑定的nfs服务器
            - name: NFS_PATH
              value: /opt/k8s          #配置绑定的nfs服务器目录
      volumes:              #申明nfs数据卷
        - name: nfs-client-root
          nfs:
            server: stor01
            path: /opt/k8s
kubectl apply -f nfs-client-provisioner.yaml 

kubectl get pod
NAME                                   READY   STATUS    RESTARTS   AGE
nfs-client-provisioner-cd6ff67-sp8qd   1/1     Running   0          14s

(6)创建 StorageClass,负责建立 PVC 并调用 NFS provisioner 进行预定的工作,并让 PV 与 PVC 建立关联

vim nfs-client-storageclass.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: nfs-client-storageclass
provisioner: nfs-storage     #这里的名称要和provisioner配置文件中的环境变量PROVISIONER_NAME保持一致
parameters:
  archiveOnDelete: "false"   #false表示在删除PVC时不会对数据进行存档,即删除数据
  
  
kubectl apply -f nfs-client-storageclass.yaml

kubectl get storageclass
NAME                      PROVISIONER   RECLAIMPOLICY   VOLUMEBINDINGMODE   ALLOWVOLUMEEXPANSION   AGE
nfs-client-storageclass   nfs-storage   Delete          Immediate           false                  43s

(7)创建 PVC 和 Pod 测试

vim test-pvc-pod.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: test-nfs-pvc
spec:
  accessModes:
    - ReadWriteMany
  storageClassName: nfs-client-storageclass    #关联StorageClass对象
  resources:
    requests:
      storage: 1Gi
---
apiVersion: v1
kind: Pod
metadata:
  name: test-storageclass-pod
spec:
  containers:
  - name: busybox
    image: busybox:latest
    imagePullPolicy: IfNotPresent
    command:
    - "/bin/sh"
    - "-c"
    args:
    - "sleep 3600"
    volumeMounts:
    - name: nfs-pvc
      mountPath: /mnt
  restartPolicy: Never
  volumes:
  - name: nfs-pvc
    persistentVolumeClaim:
      claimName: test-nfs-pvc      #与PVC名称保持一致



kubectl apply -f test-pvc-pod.yaml

PVC 通过 StorageClass 自动申请到空间

kubectl get pvc
NAME            STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS              AGE
test-nfs-pvc   Bound    pvc-11670f39-782d-41b8-a842-eabe1859a456   1Gi        RWX            nfs-client-storageclass   2s

查看 NFS 服务器上是否生成对应的目录,自动创建的 PV 会以 ${namespace}-${pvcName}-${pvName} 的目录格式放到 NFS 服务器上

ls /opt/k8s/default-test-nfs-pvc-pvc-363a53a3-b73a-437e-a9a5-02f661c5cc53

进入 Pod 在挂载目录 /mnt 下写一个文件,然后查看 NFS 服务器上是否存在该文件

kubectl exec -it test-storageclass-pod sh
/ # cd /mnt/
/mnt # echo 'this is test file' > test.txt

发现 NFS 服务器上存在,说明验证成功

cat /opt/k8s/default-test-nfs-pvc-pvc-363a53a3-b73a-437e-a9a5-02f661c5cc53/test.txt

this is test file

二、实验

 1.emptyDir 存储卷

(1)示例

创建宿主机挂载目录

编写资源清单

云原生Kubernetes:K8S存储卷_第19张图片

生成资源

查看信息

在上面定义了两个容器,其中一个容器输入日期到index.html中,然后验证范围nginx的htmnl是否可以获取日期

同时,在进入两个容器里,查看挂载数据卷的目录的数据,以验证两个容器之间挂载的emptyDir实现共享

访问cluster ip云原生Kubernetes:K8S存储卷_第20张图片

进入pod pod-emptydie里的busybox容器查看

云原生Kubernetes:K8S存储卷_第21张图片

进入pod pod-emptydie里的myapp容器查看

云原生Kubernetes:K8S存储卷_第22张图片

删除pod后,再重建,验证是否依旧可以访问原来的内容

原来内容已不在

云原生Kubernetes:K8S存储卷_第23张图片

2.hostPath卷

(1)示例

在node01节点上创建挂载目录

在node02 节点上创建挂载目录


编写资源清单文件

生成资源并查看信息

云原生Kubernetes:K8S存储卷_第24张图片
访问测试

删除pod后,再重建,验证是否依旧可以访问原来的内容

查看信息并访问测试,内容依然存在

云原生Kubernetes:K8S存储卷_第25张图片

3.NFS共享存储

(1)安装配置nfs服务

在stor01(192.168.204.177)节点上安装nfs,并配置nfs服务

安装

配置文件

重启服务

监听服务

云原生Kubernetes:K8S存储卷_第26张图片

查看共享目录

所有节点配置hosts映射,或者配置DNS解析

(2)master 节点操作

云原生Kubernetes:K8S存储卷_第27张图片

生成资源

查看信息,已分配到node01节点

云原生Kubernetes:K8S存储卷_第28张图片

删除pod

指定pod在node02节点

云原生Kubernetes:K8S存储卷_第29张图片

生成资源并查看信息,已分配到node02节点

云原生Kubernetes:K8S存储卷_第30张图片

访问测试。说明nfs实现了数据持久化

4.静态创建PV

(1)在NFS主机上创建共享目录,并且进行exportfs发布

云原生Kubernetes:K8S存储卷_第31张图片

配置nfs共享的目录

云原生Kubernetes:K8S存储卷_第32张图片

写入网页内容

云原生Kubernetes:K8S存储卷_第33张图片

重启服务

查看

云原生Kubernetes:K8S存储卷_第34张图片云原生Kubernetes:K8S存储卷_第35张图片

其他两个node节点能不能看到

云原生Kubernetes:K8S存储卷_第36张图片云原生Kubernetes:K8S存储卷_第37张图片

(2)定义pv

定义5个 pv,并且定义挂载的路径及访问模式,pv划分大小

云原生Kubernetes:K8S存储卷_第38张图片

云原生Kubernetes:K8S存储卷_第39张图片
生成资源

云原生Kubernetes:K8S存储卷_第40张图片

查看

云原生Kubernetes:K8S存储卷_第41张图片

(3) 定义pvc

情况1

pvc请求的 访问模式accessMode 及 storage大小(capacity 栏)都完全符合

生成资源

查看信息

pvc要求pv大小为2Gi,模式为RWX(ReadWriteMany),最符合要求得是pv003,绑定后,status状态变为了Bound状态

云原生Kubernetes:K8S存储卷_第42张图片

访问测试

情况2

在访问模式符合 的情况下,大小不符合,则会再所以大于请求大小的pv中,选择大小最接近的

直接修改之前的资源清单文件

云原生Kubernetes:K8S存储卷_第43张图片

生成资源

查看信息

mypvc-test02请求的是2Gi RWX,而最符合要求的pv003已经被占用,因此去找模式符合要求,存储大小大于2Gi的pv,pv004的存储大小更接近

云原生Kubernetes:K8S存储卷_第44张图片

访问测试

情况3

在访问模式不符合,或者大小没有满足的(都效于),则pod和pvc都处于pending状态

修改资源清单文件

云原生Kubernetes:K8S存储卷_第45张图片
生成资源

​​

查看信息

当没有符合要求的pv时,模式accessMode不符合或者在模式符合的情况下没有capacity栏里没有大于等于请求大小的,则pod和pvc都会处于pending状态

云原生Kubernetes:K8S存储卷_第46张图片

详细信息,没有pvc给这个节点使用

云原生Kubernetes:K8S存储卷_第47张图片

情况4

使用多主机读写 RWX (ReadWriteMany) 模式,将新创建的pod 加入到已有的pvc 中

修改资源清单文件

云原生Kubernetes:K8S存储卷_第48张图片
生成资源

查看信息

在RWX模式下,pod-vo4-pvc这个新建的pod使用了已有的pvc和多个pod共同绑定一个pv

云原生Kubernetes:K8S存储卷_第49张图片

访问测试

(4)删除pvc绑定

查看 mypvc-test02 详细信息

云原生Kubernetes:K8S存储卷_第50张图片

查看信息

云原生Kubernetes:K8S存储卷_第51张图片

先删除使用这个pvc的所有pod

再删除pvc

查看发现pvc确实被删除了,但是,相应的pv处于Released状态,此时pv无法被新pvc绑定

云原生Kubernetes:K8S存储卷_第52张图片

使用 edit 在线对pv 资源进行编辑,删除claiRef段落。保存后,通过命令查看,其状态就自动变为了Available,PV即可重新使用

删除以下内容

云原生Kubernetes:K8S存储卷_第53张图片
查看信息

pv004变为了Available状态

云原生Kubernetes:K8S存储卷_第54张图片

5.动态创建PV

(1)在NFS服务器配置nfs服务

云原生Kubernetes:K8S存储卷_第55张图片

云原生Kubernetes:K8S存储卷_第56张图片

(2)创建 Service Account,用来管理 NFS Provisioner 在 k8s 集群中运行的权限,设置 nfs-client 对 PV,PVC,StorageClass 等的规则

可以先加载镜像

云原生Kubernetes:K8S存储卷_第57张图片

查看当前sa

云原生Kubernetes:K8S存储卷_第58张图片

编写资源清单文件

云原生Kubernetes:K8S存储卷_第59张图片

再次查看sa

云原生Kubernetes:K8S存储卷_第60张图片

生成资源

再次查看sa

云原生Kubernetes:K8S存储卷_第61张图片

(3)使用 Deployment 来创建 NFS Provisioner

NFS Provisione(即 nfs-client),有两个功能:一个是在 NFS 共享目录下创建挂载点(volume),另一个则是将 PV 与 NFS 的挂载点建立关联。

由于 1.20 版本启用了 selfLink,所以 k8s 1.20+ 版本通过 nfs provisioner 动态生成pv会报错,解决方法如下:

云原生Kubernetes:K8S存储卷_第62张图片

创建 NFS Provisioner

生成资源

(4)创建 StorageClass,负责建立 PVC 并调用 NFS provisioner 进行预定的工作,并让 PV 与 PVC 建立关联

云原生Kubernetes:K8S存储卷_第63张图片生成资源

(5)创建 PVC 和 Pod 测试

云原生Kubernetes:K8S存储卷_第64张图片

PVC 通过 StorageClass 自动申请到空间

云原生Kubernetes:K8S存储卷_第65张图片

查看 NFS 服务器上是否生成对应的目录,自动创建的 PV 会以 ${namespace}-${pvcName}-${pvName} 的目录格式放到 NFS 服务器上

进入 Pod 在挂载目录 /mnt 下写一个文件,然后查看 NFS 服务器上是否存在该文件

云原生Kubernetes:K8S存储卷_第66张图片

发现 NFS 服务器上存在,说明验证成功

三、问题

1.生成pod一直pending

(1)报错

云原生Kubernetes:K8S存储卷_第67张图片

(2)原因分析

查看pod详细信息

[root@master volumes]# kubectl describe pod pod-emptydir

云原生Kubernetes:K8S存储卷_第68张图片

node节点有污点

(3)解决方法

查看污点

[root@master volumes]# kubectl describe nodes node01 | grep -i 'taints'
Taints:             check=mycheck:NoExecute
[root@master volumes]# kubectl describe nodes node02 | grep -i 'taints'
Taints:             check=mycheck:NoExecute

去除所有node节点污点

[root@master volumes]# kubectl taint nodes node01 check:NoExecute-
node/node01 untainted
[root@master volumes]# kubectl taint nodes node02 check:NoExecute-
node/node02 untainted

成功

云原生Kubernetes:K8S存储卷_第69张图片

2.shoumount -e未显示共享目录

(1)报错

 (2)原因分析

配置文件关键词“squash”错误

(3)解决方法

修改配置文件

[root@stor01 ~]# vim /etc/exports

修改前:

修改后:

成功:

3.静态创建pv 报错

(1)报错

云原生Kubernetes:K8S存储卷_第70张图片

(2)原因分析

配置文件关键词”metadata“错误

修改前:

修改后:

成功:

云原生Kubernetes:K8S存储卷_第71张图片

4.使用 Deployment 来创建 NFS Provisioner报错

(1)报错

(2)原因分析

配置文件”apiVersion“错误

(3)解决方法

修改配置文件

修改前:

修改后:

仍然报错

继续修改

 成功:

5.容器挂载报错

(1)报错

(2)原因分析

配置文件错误

(3)修改

修改前:

修改后:

 成功:

6.镜像拉取失败

(1)报错

(2)原因分析

查看详细信息:

云原生Kubernetes:K8S存储卷_第72张图片云原生Kubernetes:K8S存储卷_第73张图片云原生Kubernetes:K8S存储卷_第74张图片

镜像拉取失败,配置文件错误

(3)解决方法

每个节点确保上传镜像,以防在线下载失败

修改配置文件的镜像名称

修改前:

修改后:

成功:

7.生成PVC资源报错

(1)报错

(2)原因分析

配置文件错误

(3)解决方法

修改前:

修改后:

成功:

8.Linux客户端挂载NFS共享报错

(1)报错

(2)原因分析

根据mount返回错误,初步判断为rpcbind等相关服务异常。

查询Linux客户端rpcbind服务为stop状态。

(3)解决方法

# 重载一下再启动
systemctl daemon-reload
systemctl restart rpcbind.socket
systemctl start nfs

云原生Kubernetes:K8S存储卷_第75张图片

四、总结

容器崩溃不会导致Pod被删除,因此容器崩溃期间emptyDir中的数据是安全的。

hostPath卷将node节点的文件系统中的文件或者目录挂载到集群中。

 PV/PVC总结

PV是对底层网络存储的抽象,即将网络存储定义为一种存储资源,将一个整体的存储资源拆分成多份后给不同的业务使用。
PVC是对PV资源的申请调用,pod是通过PVC将数据保存至PV,PV再把数据保存至真正的硬件存储。

PV、PVC是K8S用来做存储管理的资源对象,它们让存储资源的使用变得可控,从而保障系统的稳定性、可靠性。StorageClass则是为了减少人工的工作量而去自动化创建PV的组件。所有Pod使用存储只有一个原则:先规划 → 后申请 → 再使用

pvc绑定情况和多节点读写:

当pvc请求的 类型accessModes 和存储storage大小没有完全符合的pv时

会在 accessModes类型相同的情况下
选择storage存储 大于请求的pv,
在多个都大于时,会选择最接近的。
在 类型accessModes都没有符合的情况下,或者storage存储大小都小于请求的时候
pod和pvc会处于pnding状态
多节点读写:

在创建pod时,pod.spec.volumes.claimName 的值使用已有的pvc 名,可以是pod使用已有的pvc,从而使用pv

K8S有两种存储资源的供应模式:静态模式和动态模式,资源供应的最终目的就是将适合的PV与PVC绑定:

静态模式:管理员预先创建许多各种各样的PV,等待PVC申请使用。
动态模式:管理员无须预先创建PV,而是通过StorageClass自动完成PV的创建以及与PVC的绑定。

StorageClass就是动态模式,根据PVC的需求动态创建合适的PV资源,从而实现存储卷的按需创建。

在创建 PVC 时需要指定 StorageClass,PVC 选择到对应的StorageClass后,与其关联的 Provisioner 组件来动态创建 PV 资源。它其实就一个存储驱动,类似操作系统里的磁盘驱动。

StorageClass 资源对象的定义主要包括:

名称、Provisioner、存储的相关参数配置、回收策略。StorageClass一旦被创建,则无法修改,只能删除重新创建。

PV和PVC的生命周期,包括4个阶段:

资源供应(Provisioning)、资源绑定(Binding)、资源使用(Using)、资源回收(Reclaiming)。首先旧的有资源供应,说白了就是得有存储驱动,然后才能创建、绑定和使用、回收。

解压命令:

1、*.tar 用 tar -xvf 解压

2、*.gz 用 gzip -d或者gunzip 解压

3、*.tar.gz和*.tgz 用 tar -xzf 解压

4、*.bz2 用 bzip2 -d或者用bunzip2 解压

5、*.tar.bz2用tar -xjf 解压

6、*.Z 用 uncompress 解压

7、*.tar.Z 用tar -xZf 解压

8、*.rar 用 unrar e解压

9、*.zip 用 unzip 解压

你可能感兴趣的:(云原生Kubernetes,云原生,kubernetes,容器)