- 《Hello YOLOv8从入门到精通》4, 模型架构和骨干网络Backbone调优实践
Jagua
YOLO
YOLOv8是由Ultralytics开发的最先进的目标检测模型,其模型架构细节包括骨干网络(Backbone)、颈部网络(Neck)和头部网络(Head)三大部分。一、骨干网络(Backbone)Backbone部分负责特征提取,采用了一系列卷积和反卷积层,同时使用了残差连接和瓶颈结构来减小网络的大小并提高性能。YOLOv8的Backbone参考了CSPDarkNet结构,的增强版本,并结合了其
- 机器学习驱动的智能化电池管理技术与应用
萌萌可爱郭德纲
机器学习人工智能
电池管理技术概述电池的工作原理与关键性能指标电池管理系统的核心功能ØSOC估计ØSOH估计Ø寿命预测Ø故障诊断人工智能机器学习基础人工智能的发展机器学习的关键概念机器学习在电池管理中的应用案例介绍人工智能在电池荷电状态估计中的应用荷电状态估计方法概述基于迁移学习的SOC估计(1)基于迁移学习的SOC估计方法数据集、估计框架、估计结果(2)全生命周期下的SOC估计方法数据集、估计框架、估计结果基于数
- Vim忍者速成秘卷:让你的键盘冒出残影の奥义
ivwdcwso
操作系统与云原生vim编辑器程序员忍道终端美学效率革命linux
核心原理通过超低延迟配置+肌肉记忆优化+视觉欺骗技术,达成行云流水的操作体验。就像《火影忍者》结印般流畅!⚡残影生成术(基础篇)"️贴地飞行模式(.vimrc极速配置)settimeoutlen=300"快捷键响应时间压缩至300ms(武士刀级响应)setttyfast"激活终端极速传输模式setlazyredraw"执行宏时暂停界面刷新(性能提升50%)"手里剑光标追踪术autocmdCurso
- YOLO系列模型从v1到v10的演进
剑走偏锋o.O
YOLO目标跟踪人工智能
文章目录引言YOLOv1:开创单阶段目标检测先河发布时间与背景核心创新模型架构训练策略与优化YOLOv2:提升精度与速度的平衡发布时间与背景核心创新模型架构训练策略与优化YOLOv3:多尺度检测与残差连接发布时间与背景核心创新模型架构训练策略与优化YOLOv4:引入注意力机制与优化模块发布时间与背景核心创新模型架构训练策略与优化YOLOv5:工程优化与实际应用的结合发布时间与背景核心创新模型架构训
- Chebykan wx 文章阅读
やっはろ
深度学习
文献筛选[1]神经网络:全面基础[2]通过sigmoid函数的超层叠近似[3]多层前馈网络是通用近似器[5]注意力是你所需要的[6]深度残差学习用于图像识别[7]视觉化神经网络的损失景观[8]牙齿模具点云补全通过数据增强和混合RL-GAN[9]强化学习:一项调查[10]使用PySR和SymbolicRegression.jl的科学可解释机器学习[11]Z.Liu,Y.Wang,S.Vaidya,F
- 每天五分钟深度学习pytorch:基于Pytorch搭建ResNet模型的残差块
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch人工智能ResNet机器学习
残差块我们分析一下这个残差块,x经过两个卷积层得到F(x),然后F(x)+x作为残差块的输出,此时就有一个问题,这个问题就是F(x)+x的维度问题,如果图片数据经过两个卷积层之后F(x)变小(height和weight变小)或者通道数发生了变化,那么此时F(x)是没有办法和x相加的,当然我们可以学习前面的GoogLeNet的方式,也就是说卷积之后的F(x)和x一样,大小不变,或者对x变道和F(x)
- Java注解说明书:从正确姿势到防坑指南,让你的代码会说话!
双囍菜菜
Javajavapython开发语言
《Java注解说明书:从正确姿势到防坑指南,让你的代码会说话!》——手把手教你玩转官方小标签,避开90%新手踩过的坑文章目录《Java注解说明书:从正确姿势到防坑指南,让你的代码会说话!》第一章:初识注解——代码世界的智能便利贴1.1注解的前世今生:从纸质标签到数字革命1.2注解的四大核心价值与实现原理第二章:基础三巨头——每个Javaer必须刻进DNA的标签2.1@Override:防手残终极护
- 搜广推校招面经三十八
Y1nhl
搜广推面经算法pytorch推荐算法搜索算法机器学习
字节推荐算法一、场景题:在抖音场景下为用户推荐广告词,吸引用户点击搜索,呈现广告这一流程的关键点以及可能遇到的困难。二、Transformer中对梯度消失或者梯度爆炸的处理在Transformer模型中,梯度消失和梯度爆炸是深度学习中常见的问题,尤其是在处理长序列数据时。为了克服这些问题,Transformer采用了一系列技术:2.1.残差连接(ResidualConnections)每个子层(包
- AdaBoost算法
Mr终游
机器学习算法决策树
目录一、核心原理:二、算法步骤三、关键优势:四.局限与解决五、代码示例(鸢尾花数据集)AdaBoost(AdaptiveBoosting)是一种经典的集成学习算法,通过组合多个弱分类器(如决策树)来构建强分类器。其核心思想是通过迭代优化残差(错误)和动态调整样本权重,逐步提升模型性能。以下是对AdaBoost的简明总结和关键要点:一、核心原理:提升法:通过顺序训练多个弱分类器,每轮专注修正前一个模
- 完整集合经验模态分解(CEEMD)详解
DuHz
人工智能算法机器学习信号处理信息与通信
完整集合经验模态分解(CEEMD)详解目录前言从EMD到EEMD再到CEEMDEMD(经验模态分解)回顾EEMD(集合经验模态分解)的改进与不足CEEMD(完整集合经验模态分解)的原理噪声对(noisepairs)与对称性CEEMD的核心数学表达式与EEMD的主要区别CEEMD算法流程与公式CEEMD分解过程中的详细推导正负噪声加法及EMD展开IMF的最终计算公式残差的平均处理CEEMD的优点与局
- Pytorch实现之LSRGAN,轻量化SRGAN超分辨率SAR
这张生成的图像能检测吗
优质GAN模型训练自己的数据集超分辨率重建人工智能图像处理计算机视觉深度学习pytorch机器学习
简介简介:在SRGAN的基础上设计了一个轻量化的SRGAN模型结构,通过DSConv+CA与残差结构的设计来减少参数量,同时利用SeLU激活函数构造。与多类SRGAN改进不同的是,很少使用BN层。论文题目:LightweightSuper-ResolutionGenerativeAdversarialNetworkforSARImages(SAR图像的轻量级超分辨率生成对抗网络)期刊:Remote
- 《Python百炼成仙》21-30章(不定时跟新)
Monkey_Jun
python安全web安全小说修仙
第廿一章列表开天·可变序列初成不周山的擎天玉柱裂开蛛网纹路,山体内部传出数据结构崩塌的轰鸣。叶军踏着《数据结构真解》残页凌空而立,手中薛香的本命玉尺泛起列表操作的幽光:补天石序列=[五色石]*9补天石序列[3]=息壤#引发链式变异楔子·共工之怒山腹深处涌出猩红的append()玄光,共工残魂在岩浆中咆哮:while天穹漏洞数量>0:补天石序列.append(五色石)天穹漏洞数量-=1叶军挥剑斩断失
- oracle 6508,【案例】Oracle报错ORA-06552 ORA-06553 ORA-006508解决办法
一条胖咸鱼
oracle6508
天萃荷净Oracle研究中心案例分析:运维DBA反映Oracle数据库alert日志中出现大量ORA-06552ORA-06553ORA-006508报错,分析原因为存储过程异常导致,结合MOS官方解决办法。下面数据库来至于一个朋友,他们生产数据库alert.log后台不到的停下面类似的错误,每次报错都是不同的存储过程名。ErrorsinfileD:\APP\LUOPING\diag\rdbms\
- Transformer 代码剖析9 - 解码器模块Decoder (pytorch实现)
lczdyx
Transformer代码剖析transformerpytorch深度学习人工智能python
一、模块架构全景图1.1核心功能定位Transformer解码器是序列生成任务的核心组件,负责根据编码器输出和已生成序列预测下一个目标符号。其独特的三级注意力机制架构使其在机器翻译、文本生成等任务中表现出色。下面是解码器在Transformer架构中的定位示意图:解码器层组件解码器内部结构Transformer自注意力交叉注意力前馈网络残差连接+层归一化嵌入层位置编码解码器层1解码器层2...解码
- 图片生成Prompt编写技巧
赫萝的红苹果
prompt
1.图片情绪(场景氛围)一张图片一般都会有一个情绪基调,因为作画本质上也是在传达一些情绪,一般都会借助图片的氛围去转达。例如:比如家庭聚会一般是欢乐、喜乐融融。断壁残垣一般是悲凉。还有萧瑟、孤寂等。2.补充细节,多使用描述性的形容词描述图片中涉及到的所有元素。使用形容词补充元素的细节,和扩句差不多。例如一条狗,可以加上体型、颜色、种类,一条黄色的很可爱的小小个的中华田园犬。3.指定视角相同的景色,
- 文章解读与仿真程序复现思路——EI\CSCD\北大核心《基于源荷两侧不确定的虚拟电厂灵活性调整建模及调度策略》
电网论文源程序
文章解读程序
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学
- ALOAM代码解析laserMapping(二)
大山同学
代码解析SLAM感知定位
文章目录前言1.计算当前帧位置的IJK坐标2.与地图特征点与线段拟合及残差计算2.1.变换点云坐标系2.2.寻找最近邻点2.3.计算最近邻点的中心2.4.计算协方差矩阵2.5.特征值与特征向量分析2.6.判断是否为线特征2.7.添加残差函数3.点到平面拟合与残差计算(LidarPlaneNormFactor)3.1.变换点云坐标系3.2.寻找最近邻点3.3.最小二乘法拟合平面3.4.归一化法向量3
- 【YOLOv11改进[注意力]】引入YOLOv12的A2C2f模块改进v11
Jackilina_Stone
【改进】YOLO系列YOLOpython计算机视觉OD
本文将进行在YOLOv11中引入A2C2f模块魔改v11,文中含全部代码、详细修改方式。助您轻松理解改进的方法。目录一YOLOv121区域注意力(AreaAttention)2R-ELAN(残差高效层聚合网络)3架构优化4实验二魔改YOLOv111整体修改
- ResNet代码详解与具体实现
墨小傲
python人工智能神经网络深度学习
现在在搞一个项目,想将目前模型架构中的vgg换成resnet网络,所以写了这篇文章。代码都是官网的代码,只是对内容进行了解释。1.BasicBlock类中的init()函数是先定义网络架构,forward()的函数是前向传播,实现的功能就是残差块,importtorch.nnasnnimportmathimporttorch.utils.model_zooasmodel_zoo#这个文件内包括6中
- python有限元传热求解_用python实现简单的有限元方法(一)
weixin_39545102
python有限元传热求解
华中师范大学hahakity有限元算法(FiniteElementMethod,简称FEM)是一种非常流行的求解偏微分方程的数值算法。有限元被广泛应用于结构受力分析、复杂边界的麦克斯韦方程求解以及热传导等问题。这一节介绍有限元方法的基本原理,以及如何用Python从头实现一个有限元算法,数值求解麦克斯韦方程。学习内容筑基:加权残差法(WeightedResidualMethod)心法:有限元与有限
- 《西湖绸》(仿郭敬明「蜀绣」)
后端
《西湖绸》歌词【主歌1】西子眉黛深浅入云岫(苏轼)孤山寺北云脚低(白居易)白沙堤上系兰舟半城烟雨半城绸(化用"半壕春水一城花")【副歌1】三潭月影缝着二十四桥秋(张岱/杜牧)柳浪闻莺处谁裁锦字收断桥残雪绣白蛇千年眸(白蛇传典故)雷峰斜照里金线锁重楼(张岱)【主歌2】曲院风荷穿针银鳞游(杨万里)花港观鱼衔走苏小愁(白居易/苏小小)平湖秋月晾鲛绡皱(化用"鲛人潜织"典故)六和听潮解连环锈(周密/辛弃疾
- oracle pls-00302 ora-06550,案例:Oracle报错PLS-00302 DBA在exp导出数据报错PLS-00302:component‘SET_NO_OUTLINES mus...
weixin_39860919
oraclepls-00302ora-06550
天萃荷净运维DBA在使用逻辑导出EXP导出数据时报错PLS-00302:component‘SET_NO_OUTLINES’mustbedeclared,分析原因为客户端版本问题导致今天接到测试报告,他的客户端不能导出数据库1.逻辑导出exp时报错Exportstartedon2012-1-1615:30:05D:\oracle\product\10.2.0\client_3\BIN\exp.ex
- 【深度学习】计算机视觉(CV)-图像分类-ResNet(Residual Network,残差网络)
IT古董
深度学习人工智能深度学习计算机视觉分类
ResNet(ResidualNetwork,残差网络)是一种深度卷积神经网络(CNN)架构,由何恺明(KaimingHe)等人在2015年提出,最初用于ImageNet竞赛,并在分类任务上取得了冠军。ResNet的核心思想是残差学习(ResidualLearning),它通过跳跃连接(SkipConnections)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得非常深的网络(如50层、1
- YOLOv8中Bottleneck模块详解
王了了哇
YOLO计算机视觉深度学习pytorchpython
1.Bottleneck模块介绍Bottleneck模块在YOLOv8中的作用是进行特征提取和增强,是网络中的核心构建模块之一。它的主要功能是通过卷积操作来处理输入特征图,并在适当情况下应用残差连接,使得信息能够有效地通过网络层进行传播。2.Bottleneck模块的位置和作用在YOLOv8的网络结构中,Bottleneck模块被多次使用,主要出现在以下几个部分:Backbone部分:在多个层次上
- 光迅科技2019校园招聘笔试题-----汉诺塔问题
L--certain
光迅科技笔试
这道笔试题怎么说呢,本来是一道送分题,结果最后成了送命题。代码写出来了,就是输出不合要求,当时想了一会,没想出来,时间就到了,可惜!问题描述就是普通的汉诺塔问题,就是输出要求有点难搞。(由于手残,题目被删了。。。)简单说一下,就是说输入一个数,表示几个盘子,输出,先输出总共需要几步,再输出每一步的过程。我当时写的代码如下:num=int(input())res=0defmove(n,a,b,c):
- 【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
机器学习司猫白
深度学习人工智能resnet神经网络残差
深入探讨ResNet:解决深度神经网络训练问题的革命性架构随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加困难,主要问题是“梯度消失”和“梯度爆炸”问题。幸运的是,ResNet(ResidualNetworks)通过引入“残差学习”概念,成功地解决了这些问题,极大地推动了深度学习的发展。本文将详细介绍R
- 牧神记(校对版全本)- 热门小说分享- 电子书
jiswordsman
生活
大墟的祖训说,天黑,别出门。大墟残老村的老弱病残们从江边捡到了一个婴儿,取名秦牧,含辛茹苦将他养大。这一天夜幕降临,黑暗笼罩大墟,秦牧走出了家门……做个春风中荡漾的反派吧!瞎子对他说。秦牧的反派之路,正在崛起!全书简介天魔教教主夫人司幼幽于新婚之夜暗害教主历天行,夺走镇教圣典后不知所终,追查多年的少年祖师来到了神秘的大墟,机缘巧合下迎来了少教主秦牧,由九位隐世高手抚养长大的蛮荒少年由此踏上了未知的
- 【Transformer】小白入门指南
静静喜欢大白
随记医疗影像transformer深度学习人工智能
目录1、简介2、Transformer解决问题技术概览核心组成自注意力机制(Self-AttentionMechanism)多头注意力机制(Multi-HeadAttention)前馈神经网络(Feed-ForwardNeuralNetwork)位置编码(PositionalEncoding)残差连接与标准化框架认识1.输入输出2.Encoder3.Decoder4.训练过程5.Positione
- 大型语言模型的核心机制解析
耶耶Norsea
网络杂烩人工智能Deepseek
摘要大型语言模型的核心机制依赖于Transformer架构,该架构通过嵌入层将输入数据转换为向量形式,并结合位置编码以保留序列中单词的顺序信息。随后,这些向量进入多头自注意力层,能够同时关注输入序列的不同部分。自注意力层的输出经过残差连接和层归一化处理,以增强模型的学习能力和稳定性。接着,数据流经前馈网络进一步处理,最终再次通过残差连接和层归一化,得到编码器层的输出。模型性能高度依赖大规模和高质量
- 免费!满血版DeepSeek丝滑畅玩,低门槛实现671B-R1/V3自由
量子位
想快速顺畅上手DeepSeek还不踩坑?“真·满血DeepSeek-671B-R1/V3解决方案”来了!它能解决的问题包括:服务器总繁忙充了钱却被残血模型欺骗费力拉新,遇上代金券失效背刺不懂代码,不会使用API接口模型不能联网查询实时信息数据隐私要求高,不想上传外网潞晨云官方现在提供以下服务:免费通道:不用拉新、不计代金券、不用充值。联网搜索:在线点击即用,体验加强版满血模型。无代码:在线交互体验
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo