ACM模板二:树、图、并查集、DancingLink

目录

〇,全文说明、宏定义代码

一,二叉树

二,树状数组、线段树

三,多叉树、RMQ、LCA

四,并查集、DancingLink、无向图、最小生成树

五,有向图、单源最短路径、连通分量、拓扑排序

六,网格图、回路链路、路径重建

七,test


〇,全文说明、宏定义代码

类里面和宏定义处都有接口注释,因为宏不体现具体参数,所以注释以类里面的为准。

所有代码放在一起是可以编译运行的,如果按照章来划分,最后一章是测试代码,其他任意一章都可以单独编译运行

ACM模板二:树、图、并查集、DancingLink_第1张图片

ACM模板二:树、图、并查集、DancingLink_第2张图片

宏定义代码:

#define LOCAL //力扣不要本行代码,其他OJ随意

///(1)二叉树///
#define MaxDepth BinaryTree::maxDepth//求二叉树的深度,根节点深度是1
#define MinDepth BinaryTree::minDepth//叶子节点的最小深度
#define PreorderTraversal BinaryTree::preorderTraversal//二叉树的前序遍历
#define PostorderTraversal BinaryTree::postorderTraversal//二叉树的后序遍历
#define InorderTraversal BinaryTree::inorderTraversal//二叉树的中序遍历
#define BuildTree BinaryTree::buildTree//根据前序和中序重建二叉树,假设没有重复数字
#define BuildTree2 BinaryTree::buildTree2//根据中序和后序重建二叉树,假设没有重复数字
#define CountNodes BinaryTree::countNodes//求节点个数
#define CopyTree BinaryTree::copyTree//拷贝二叉树
#define IsSameTree BinaryTree::isSameTree//判断两棵二叉树是否全等
#define InvertTree BinaryTree::invertTree//左右翻转二叉树

///(2)树状数组、线段树///
// TreeArray 树状数组
// TreeArray2D 二维树状数组
// SegmentTree 线段树

///(3)多叉树///
// TreeWithId 略。//把二叉树或多叉树转成id形式的树,前序遍历,从0开始编号

///(4.1)并查集///
// Union 略。并查集

///(4.2)精确覆盖算法///
// DancingLink 略。精确覆盖算法

///(4.3)无向图///
#define UndirectedEdgeToFatherList UndirectedGraph::undirectedEdgeToFatherList//无向拓扑排序,输入无向无环图{{1,2}{1,3}{4,3}}的邻接表和指定根1,输出父节点表{4:3, 3:1, 2:1}
#define HasUndirectedCircle UndirectedGraph::hasCircle//根据无向图的邻接表判断是否有环
#define GetEdgeCover UndirectedGraph::getEdgeCover//给定一个2n个点的图,选出n条边,刚好覆盖这2n个点

///(4.4)最小生成树///
#define KruskalminCostTree Kruskal::minCostConnectPoints
#define PrimminCostTree Prim::minCostConnectPoints


///(5.1)有向图///
#define ReverseGraph DirectedGraph::reverseGraph//构建有向图的反向图
#define GetLongestPath DirectedGraph::getLongestPath//求有向无环图中的最长路径长度,出参nextNode是每个点的后继,len是每个点出发的最长路径长度
#define HasDirectedCircle DirectedGraph::hasCircle//根据有向图的邻接表判断是否有环

///(5.2)单源最短路径///
#define DijskraShortestPath Dijskra::shortestPath//求最短路,适用于不存在负权值的边的图
#define BellmanFordShortestPath BellmanFord::shortestPath//求最短路,适用于不存在负权值的环的图
#define SPFAShortestPath SPFA::shortestPath//求最短路,适用于不存在负权值的环的图

///(5.3)不区分有向图和无向图的通用操作///
#define GetSubGraph GraphOpt::getSubGraph//根据点集取子图

///(5.4)连通分量、拓扑排序///
#define SemiConnectComponent SemiConnect::semiConnectComponent//半连通分量分割
#define ConnectComponent KosarajuStrongConnect::connectComponent//Kosaraju算法,强连通分量分割
// TarjanUndirect 略。Tarjan算法,双连通分量分割
// TarjanStrongConnect 略。Tarjan算法,强连通分量分割
#define TopoSortNoCircle DirectedTopoSort::topoSortNoCircle //有向无环图拓扑排序,输入n=3,g.edges={{0,1}{0,2}{1,2}}, 输出{0,1,2},有环则输出为空
#define TopoSort DirectedTopoSort::topoSort //有向图拓扑排序


///(6.1)网格图///
// GridGraph 略

///(6.2)回路或链路///
// Hierholzer 略。欧拉回路或链路
// Hamilton 略。哈密顿回路或链路

///(6.3)路径重建///
// ReBuild 略。路径重建

一,二叉树


#ifdef LOCAL
#ifndef struct_TreeNode
#define struct_TreeNode
struct TreeNode {
	int val;
	TreeNode* left;
	TreeNode* right;
	TreeNode() : val(0), left(nullptr), right(nullptr) {}
	TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
	TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {}
};
#endif
#endif
class BinaryTree
{
public:
	//求二叉树的深度,根节点深度是1
	static int maxDepth(TreeNode* root) {
		if (!root)return 0;
		return max(maxDepth(root->left), maxDepth(root->right)) + 1;
	}
	//叶子节点的最小深度
	static int minDepth(TreeNode* root) {
		if (!root)return 0;
		return min_depth(root);
	}
	//二叉树的前序遍历
	static vector preorderTraversal(TreeNode* root) {
		vectorv1;
		if (root == NULL)return v1;
		v1.insert(v1.end(), root->val);
		vectorv2 = preorderTraversal(root->left);
		v1.insert(v1.end(), v2.begin(), v2.end());
		v2 = preorderTraversal(root->right);
		v1.insert(v1.end(), v2.begin(), v2.end());
		return v1;
	}
	//二叉树的后序遍历
	static vector postorderTraversal(TreeNode* root) {
		vectorv1;
		if (root == NULL)return v1;
		vectorv2 = postorderTraversal(root->left);
		v1.insert(v1.end(), v2.begin(), v2.end());
		v2 = postorderTraversal(root->right);
		v1.insert(v1.end(), v2.begin(), v2.end());
		v1.insert(v1.end(), root->val);
		return v1;
	}
	//二叉树的中序遍历
	static vector inorderTraversal(TreeNode* root) {
		vectorv1;
		if (root == NULL)return v1;
		v1 = inorderTraversal(root->left);
		v1.insert(v1.end(), root->val);
		vectorv2 = inorderTraversal(root->right);
		v1.insert(v1.end(), v2.begin(), v2.end());
		return v1;
	}
	//根据前序和中序重建二叉树,假设没有重复数字
	static TreeNode* buildTree(vector& preorder, vector& inorder) {
		return build_tree(preorder, 0, inorder, 0, inorder.size());
	}
	//根据中序和后序重建二叉树,假设没有重复数字
	static TreeNode* buildTree2(vector& inorder, vector& postorder) {
		return build_tree2(postorder, 0, inorder, 0, inorder.size());
	}
	//求节点个数
	static int countNodes(TreeNode* root) {
		if (!root)return 0;
		return countNodes(root->left) + countNodes(root->right) + 1;
	}
	//拷贝二叉树
	static TreeNode* copyTree(TreeNode* root)
	{
		if (!root)return root;
		return new TreeNode(root->val, copyTree(root->left), copyTree(root->right));
	}
	//判断两棵二叉树是否全等
	static bool isSameTree(TreeNode* r1, TreeNode* r2)
	{
		if (r1 == NULL && r2 == NULL)return true;
		if (r1 == NULL || r2 == NULL)return false;
		if (r1->val != r2->val)return false;
		return isSameTree(r1->left, r2->left) && isSameTree(r1->right, r2->right);
	}
	//左右翻转二叉树
	static TreeNode* invertTree(TreeNode* root) {
		if (!root)return root;
		TreeNode* p = root->left, *q = root->right;
		root->left = q, root->right = p;
		invertTree(p);
		invertTree(q);
		return root;
	}
private:
	static int min_depth(TreeNode* root) {
		if (!root)return 1234567890;
		if (!root->left && !root->right)return 1;
		return min(min_depth(root->left), min_depth(root->right)) + 1;
	}
	static TreeNode* build_tree(vector& preorder, int s1, vector& inorder, int s2, int len) {
		if (len <= 0)return NULL;
		TreeNode* ans = new TreeNode;
		ans->val = preorder[s1];
		auto loc = find(inorder.begin() + s2, inorder.begin() + s2 + len, preorder[s1]);
		ans->left = build_tree(preorder, s1 + 1, inorder, s2, loc - inorder.begin() - s2);
		ans->right = build_tree(preorder, loc - inorder.begin() - s2 + s1 + 1, inorder, loc - inorder.begin() + 1, len - (loc - inorder.begin() - s2) - 1);
		return ans;
	}
	static TreeNode* build_tree2(vector& postorder, int s1, vector& inorder, int s2, int len) {
		if (len <= 0)return NULL;
		TreeNode* ans = new TreeNode;
		ans->val = postorder[s1 + len - 1];
		auto loc = find(inorder.begin() + s2, inorder.begin() + s2 + len, postorder[s1 + len - 1]);
		ans->left = build_tree2(postorder, s1, inorder, s2, loc - inorder.begin() - s2);
		ans->right = build_tree2(postorder, loc - inorder.begin() - s2 + s1, inorder, loc - inorder.begin() + 1, len - (loc - inorder.begin() - s2) - 1);
		return ans;
	}
};

二,树状数组、线段树


template
class TreeArray
{
public:
	TreeArray(int len)//len是元素实际数量,元素id范围是[1,n]
	{
		this->n = len;
		memset(c, 0, sizeof(int)*(len + 1));
	}
	void add(int i, int x)
	{
		while (i <= n)
		{
			c[i] += x;
			i += (i&(-i));
		}
	}
	int getSum(int i)
	{
		int s = 0;
		while (i)
		{
			s += c[i];
			i -= (i&(-i));
		}
		return s;
	}
private:
	int n;
	int c[maxLen+5];
};

template
class TreeArray2D
{
public:
	TreeArray2D(int len)//len是元素实际数量,元素id范围是[1,n]*[1,n]
	{
		this->n = len;
		for (int i = 0; i <= n; i++)memset(c[i], 0, sizeof(int)*(n + 1));
	}
	void add(int x, int y, int a = 1)
	{
		for (int i = x; i <= n; i += (i&(-i)))
			for (int j = y; j <= n; j += (j&(-j)))c[i][j] += a;
	}
	int getSum(int x, int y)
	{
		int s = 0;
		for (int i = x; i > 0; i -= (i&(-i)))
			for (int j = y; j > 0; j -= (j&(-j)))
				s += c[i][j];
		return s;
	}
private:
	int n;
	int c[maxLen +5][maxLen +5];
};

//type=0,1,2,3,4分别表示sum型、min型、max型、minId型、maxId型线段树
//maxLen是元素最大数量
template
class SegmentTreeBase
{
public:
	T* getData()//先调getData更新数据再调build
	{
		return num;
	}
	void build(int len)//len是元素实际数量,元素id范围是[1,n]
	{
		this->n = len;
		build(1, 1, n);
	}
	void update(int uplace, T value)//1<=uplace<=n
	{
		num[uplace] = value;
		update(1, 1, n, uplace);
	}
	T query(int x, int y)//1<=x<=y<=n
	{
		return query(1, 1, n, x, y);
	}
protected:
	template
	inline T2 op(T2 a, T2 b)
	{
		if (type == 3)return num[a] < num[b] ? a : b;
		if (type == 4)return num[a] > num[b] ? a : b;
		if (type == 0)return a + b;
		return type == 1 ? min(a, b) : max(a, b);
	}
	void build(int key, int low, int high)
	{
		if (low == high)
		{
			ans[key] = type > 2 ? low : num[low];
			return;
		}
		int mid = (low + high) / 2;
		build(key * 2, low, mid);
		build(key * 2 + 1, mid + 1, high);
		ans[key] = op(ans[key * 2], ans[key * 2 + 1]);
	}
	void update(int key, int low, int high, int uplace)
	{
		if (low == high)
		{
			ans[key] = type > 2 ? low : num[low];
			return;
		}
		int mid = (low + high) / 2;
		if (uplace <= mid)update(key * 2, low, mid, uplace);
		else update(key * 2 + 1, mid + 1, high, uplace);
		ans[key] = op(ans[key * 2], ans[key * 2 + 1]);
	}
	T query(int key, int low, int high, int x, int y)
	{
		if (low == x && high == y)return ans[key];
		int mid = (low + high) / 2;
		if (mid < x)return query(key * 2 + 1, mid + 1, high, x, y);
		if (mid >= y)return query(key * 2, low, mid, x, y);
		T a = query(key * 2, low, mid, x, mid);
		T b = query(key * 2 + 1, mid + 1, high, mid + 1, y);
		return  op(a, b);
	}
protected:
	int n;
	T num[maxLen + 1];
	T ans[maxLen * 4 + 10];
};
//sum型线段树拓展,支持查询前缀和
template
class SegmentTreeTypeSum :public SegmentTreeBase<0, maxLen, T>
{
	using BASE = SegmentTreeBase<0, maxLen, T>;
public:
	int queryPreSum(T x)
	{
		return queryPreSum(1, 1, BASE::n, x);
	}
private:
	int queryPreSum(int key, int low, int high, T x)
	{
		if (low == high)return low;
		int mid = (low + high) / 2;
		if (x <= BASE::ans[key * 2])return queryPreSum(key * 2, low, mid, x);
		return queryPreSum(key * 2 + 1, mid + 1, high, x - BASE::ans[key * 2]);
	}
};
//5种线段树拓展,支持区间更新,区间查询
template
class SegmentTree :public SegmentTreeBase
{
	using BASE = SegmentTreeBase;
public:
	void build(int len)//len是元素实际数量,元素id范围是[1,n]
	{
		BASE::n = len;
		build(1, 1, BASE::n);
	}
	void update(int uplace, T value)//1<=uplace<=n,覆盖父类函数
	{
		update(uplace, uplace, value);
	}
	void update(int x, int y, T value)//1<=x<=y<=n
	{
		update(1, 1, BASE::n, x, y, value);
	}
	T query(int x, int y)//1<=x<=y<=n
	{
		return query(1, 1, BASE::n, x, y);
	}
private:
	static inline T opMulti(T a, int num)
	{
		if (!type)return a * num;
		return a;
	}
	void build(int key, int low, int high)
	{
		if (low == high)
		{
			BASE::ans[key] = type > 2 ? low : BASE::num[low];
			lazy[key] = invalid;
			return;
		}
		int mid = (low + high) / 2;
		build(key * 2, low, mid);
		build(key * 2 + 1, mid + 1, high);
		BASE::ans[key] = BASE::op(BASE::ans[key * 2], BASE::ans[key * 2 + 1]);
		lazy[key] = invalid;
	}
	void update(int key, int low, int high, int x, int y, T value)
	{
		if (low == x && high == y)
		{
			BASE::ans[key] = type > 2 ? x : opMulti(value, high - low + 1);
			lazy[key] = value;
			if (x == y)BASE::num[x] = value;
			return;
		}
		if (lazy[key] != invalid)down(key, low, high);
		int mid = (low + high) / 2;
		if (mid < x)update(key * 2 + 1, mid + 1, high, x, y, value);
		else if (mid >= y)update(key * 2, low, mid, x, y, value);
		else
		{
			update(key * 2, low, mid, x, mid, value);
			update(key * 2 + 1, mid + 1, high, mid + 1, y, value);
		}
		BASE::ans[key] = BASE::op(BASE::ans[key * 2], BASE::ans[key * 2 + 1]);
	}
	void down(int key, int low, int high)
	{
		int mid = (low + high) / 2;
		BASE::ans[key * 2] = type > 2 ? low : opMulti(lazy[key], mid - low + 1);
		BASE::ans[key * 2 + 1] = type > 2 ? high : opMulti(lazy[key], high - mid);
		lazy[key * 2] = lazy[key];
		lazy[key * 2 + 1] = lazy[key];
		lazy[key] = invalid;
	}
	T query(int key, int low, int high, int x, int y)
	{
		if (low == x && high == y)return BASE::ans[key];
		if (lazy[key] != invalid) {
			return type > 2 ? x : opMulti(lazy[key], y - x + 1);
		}
		int mid = (low + high) / 2;
		if (mid < x)return query(key * 2 + 1, mid + 1, high, x, y);
		if (mid >= y)return query(key * 2, low, mid, x, y);
		T a = query(key * 2, low, mid, x, mid);
		T b = query(key * 2 + 1, mid + 1, high, mid + 1, y);
		return BASE::op(a, b);
	}
private:
	T lazy[maxLen * 4 + 10];
};

三,多叉树、RMQ、LCA


#ifdef LOCAL
#ifndef struct_TreeNode
#define struct_TreeNode
struct TreeNode {
	int val;
	TreeNode* left;
	TreeNode* right;
	TreeNode() : val(0), left(nullptr), right(nullptr) {}
	TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
	TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {}
};
#endif
#endif

struct MultiTreeNode {
	int val = 0;
	vectorson{}; //son只存实际有的孩子,son可能为空
	MultiTreeNode() {}
	MultiTreeNode(int x) : val(x) {}
};

//把二叉树或多叉树转成id形式的树,前序遍历,从0开始编号
class TreeWithId 
{
public:
	vectorvals{};//节点权值
	vector>sons{};//所有子节点的编号
	vectordist{};//从根到每个节点的有向长度
	TreeWithId() {}
	TreeWithId(TreeNode* root, const vector&faDist = {}) {
		if (root)dfs(root);
		getAllDist(faDist);
	}
	TreeWithId(MultiTreeNode* root, const vector&faDist = {}) {
		if (root)dfs(root);
		getAllDist(faDist);
	}
	void getAllDist(const vector&faDist) {
		if (faDist.empty())return;
		if(vals.empty())vals.resize(faDist.size());
		dist.resize(faDist.size());
		dfs(0, faDist[0], faDist);
	}
private:
	inline void dfs(TreeNode* root) {
		static int id = 0;
		int fid = id++;
		vals.push_back(root->val);
		if (root->left)sons[fid].push_back(id),dfs(root->left);
		if (root->right)sons[fid].push_back(id),dfs(root->right);
	}
	inline void dfs(MultiTreeNode* root) {
		static int id = 0;
		int fid = id++;
		vals.push_back(root->val);
		for(auto p:root->son)sons[fid].push_back(id), dfs(p);
	}
	inline void dfs(int root, int dis, const vector&faDist) {
		dist[root] = dis;
		for (auto r : sons[root])dfs(r, dis + faDist[r], faDist);
	}
};


//type=1是求最小值,=2是求最大值, =3是minId,=4是maxId
template
class RMQ
{
public:
	RMQ() {}
	RMQ(const vector& data) {
		this->data = data;
		len = data.size();
		logLen = getLength(len + 5);
		init(data);
	}
	inline T getMinMax(int low, int high) { //求[low,high]内的最值,0<=low<=high& data) {
		v.resize(len);
		for (int i = 0; i < v.size(); i++) {
			v[i].resize(logLen);
			v[i][0] = data[i];
		}
		for (int j = 1; j < logLen; j++)
		{
			for (int i = 0; i < len; i++)
			{
				v[i][j] = v[i][j - 1];
				int k = i + (1 << (j - 1));
				if (type <= 2) {
					if (k < len)v[i][j] = opt(v[i][j], v[k][j - 1]);
				}
				else {
					if (k < len)v[i][j] = optId(v[i][j], v[k][j - 1]);
				}
			}
		}
	}
	static inline T opt(T x, T y) {
		return type == 1 ? min(x, y) : max(x, y);
	}
	inline T optId(int x, int y) {
		if (type == 3) {
			return data[x] < data[y] ? x : y;
		}
		return data[x] < data[y] ? y : x;
	}
	//二进制总位数
	static inline int getLength(int n) {
		int ans = 0;
		while (n)
		{
			n >>= 1;
			ans++;
		}
		return ans;
	}
private:
	vectordata;
	vector>v;
	int len, logLen;
};
class LCA {
public:
	LCA(TreeWithId tree) {
		int n = tree.vals.size();
		visitn.resize(n);
		visitnum.resize(n * 2 - 1);
		dfs(tree, 0, 1);
		opt = RMQ<3>(visitnum);
	}
	//输入2个节点的id,输出最近公共祖先的id
	int getLca(int x, int y)
	{
		x = visitn[x], y = visitn[y];
		if (x > y)x ^= y ^= x ^= y;
		int minId = opt.getMinMaxId(x, y);
		return visitnum[minId];
	}
private:
	void dfs(TreeWithId &tree, int m, int d)
	{
		for (auto p : tree.sons[m])
		{
			visitnum[vnum++] = m; //存入遍历数对应的深度
			dfs(tree, p, d + 1);
		}
		visitn[m] = vnum; //存入每个点的任意一个遍历数
		visitnum[vnum++] = m;
	}
	vector visitnum;
	vector visitn;
	int vnum = 0;
	RMQ<3>opt;
};

四,并查集、DancingLink、无向图、最小生成树


class Union //并查集
{
public:
	Union(int num, bool canZip = true, int startId = 0) //startId一般是0或1,可以大于1,不能太大
	{
		fa.resize(num + startId);
		for (int i = startId; i < fa.size(); i++)fa[i] = i;
		this->canZip = canZip;
		this->startId = startId;
	}
	virtual int find(int x)	//找祖先,canZip控制能否做路径压缩加速
	{
		if (canZip) {
			if (fa[x] == x)return x;
			return fa[x] = find(fa[x]);
		}
		int r = x;
		while (fa[r] != r)r = fa[r];
		return r;
	}
	bool inSame(int x, int y)//是否位于同一个集合
	{
		return find(x) == find(y);
	}
	void merge(int x, int y)//合并2个集合,如果是同一个集合则不做操作
	{
		if (!inSame(x, y))fa[find(x)] = y;
	}
	vector getRoots()//获取所有根节点
	{
		vectorans;
		ans.reserve(fa.size());
		for (int i = startId; i < fa.size(); i++)if (fa[i] == i)ans.push_back(i);
		return ans;
	}
	int getRootNums()//统计根节点数目
	{
		return getRoots().size();
	}
	vector> getGroups()
	{
		vector roots = getRoots();
		mapm = reflect(roots);
		vector>ans(m.size());
		for (int i = startId; i < fa.size(); i++)ans[m[find(i)]].push_back(i);
		return ans;
	}
protected:
	template
	map reflect(const vector& v)
	{
		mapm;
		for (int i = 0; i < v.size(); i++)m[v[i]] = i;
		return m;
	}
protected:
	vectorfa;
	bool canZip;
	int startId;
};
class UnionDif :public Union //差分版并查集,依赖路径压缩
{
public:
	UnionDif(int num, int startId = 0) :Union{ num,true,startId } {}
	int find(int x)	//找祖先
	{
		if (fa[x] == x)return x;
		find(fa[x]);
		dif[x] += dif[fa[x]];
		fa[x] = fa[fa[x]];
		return fa[x];
	}
	void merge(int x, int y, double xSubY = 0)//合并2个集合,如果是同一个集合则不做操作
	{
		if (inSame(x, y))return;
		find(x);
		dif[fa[x]] = xSubY - dif[x];
		fa[fa[x]] = y;
		return;
	}
	double getDif(int x)
	{
		return dif[x];
	}
private:
	mapdif;//每个节点和fa的差分
};
template
class Vunion:public Union //集合并查集
{
public:
	Vunion(int num) :Union{ num } {};
	void push(vector>&v) {
		map>m;
		for (int i = 0; i < v.size(); i++)for (auto x : v[i])m[x].push_back(i);
		for (auto &p : m) {
			for (auto x : p.second)merge(x, p.second[0]);
		}
	}
};

class DancingLink // 精确覆盖算法
{
public:
	DancingLink(int m, int n, int maxNum) //01矩阵的行、列、1的最大数量
	{
		this->m = m, this->n = n, maxNum += n + 1;
		rhead.resize(m + 1), nums.resize(n + 1);
		row.resize(maxNum), col.resize(maxNum);
		up.resize(maxNum), down.resize(maxNum), lef.resize(maxNum), rig.resize(maxNum);
		sc.resize(m), rows.resize(m);
		for (int i = 0; i <= n; i++)
		{
			up[i] = i, down[i] = i;
			lef[i] = i - 1, rig[i] = i + 1;
			row[i] = 0, col[i] = i, nums[i] = 0;
		}
		lef[0] = n, rig[n] = 0, nums[0] = INT_MAX;
		key = n;
		for (int i = 0; i <= m; i++)rhead[i] = 0;
	}
	void push(int r, int c)//新增坐标在(r,c)的一个节点
	{
		row[++key] = r, col[key] = c;
		up[key] = c, down[key] = down[c];
		up[down[c]] = key, down[c] = key;
		if (rhead[r] == 0)rhead[r] = lef[key] = rig[key] = key;
		else
		{
			lef[key] = rhead[r], rig[key] = rig[rhead[r]];
			lef[rig[rhead[r]]] = key, rig[rhead[r]] = key;
		}
		nums[c]++;
	}
	vector> getAllAns()
	{
		return dfs(false);
	}
	vector getAnyAns()
	{
		auto v = dfs(true);
		if (v.size())return v[0];
		return vector{};
	}
private:
	vector> dfs(bool onlyOne)
	{
		vector>ans;
		while (true) {
			if (rig[0] == 0) {
				rows.resize(rowsid);
				ans.push_back(rows);
				rows.resize(m);
				if (onlyOne)return ans;
			}
			int c = min_element(nums.begin() + 1, nums.end()) - nums.begin();
			if (rig[0] == 0)c = 0;
			del(c);
			while (true) {
				c = down[c];
				if (c > n)break;
				reback(col[c]);
				if (scid == 0)return ans;
				c = sc[--scid];
				rowsid--;
				for (int j = rig[c]; j != c; j = rig[j])reback(col[j]);
			}
			sc[scid++] = c;//记录选中id
			rows[rowsid++] = row[c];
			for (int j = rig[c]; j != c; j = rig[j])del(col[j]);
		}
		return ans;
	}
	inline void del(int c)//删除第c列的所有元素和他们所在行的所有元素
	{
		lef[rig[c]] = lef[c], rig[lef[c]] = rig[c];
		for (int i = down[c]; i != c; i = down[i])
			for (int j = rig[i]; j != i; j = rig[j])
				down[up[j]] = down[j], up[down[j]] = up[j], nums[col[j]]--;
		nums[c] = INT_MAX;
	}
	inline void reback(int c)//完全回退del操作
	{
		lef[rig[c]] = rig[lef[c]] = c, nums[c] = 0;
		for (int i = down[c]; i != c; i = down[i]) {
			for (int j = rig[i]; j != i; j = rig[j])
				down[up[j]] = up[down[j]] = j, nums[col[j]]++;
			nums[c]++;
		}
	}
private:
	int m, n, key;
	vectorrow, col;//每个节点的行,列
	vectorrhead;//每行第一个节点的id
	vectorup, down, lef, rig;//每个节点上下左右的节点id
	vectornums;//每一列的元素个数
	vectorsc;
	int scid = 0, rowsid = 0;
	vectorrows;//覆盖选中的行,值的范围是从1到m
};
template
struct UndirectedEdge
{
	UndirectedEdge() {
		a = b = dist = 0;
	};
	UndirectedEdge(vectorv) {
		a = v[0], b = v[1], dist = v[2];
	}
	int a;//端点a的id
	int b;//端点b的id
	T dist;//ab之间的距离
};
template
struct UndirectedGraphData
{
public:
	vector>edges; //边集,无法表示孤立点,一条边只出现一次
	map, T>edgeMap; //边集,无法表示孤立点,一条边只出现一次
	map>adjaList;//邻接表,孤立点是否出现取决于allPointFlag,一条边两个点都出现在对方的邻接表中
	bool allPointFlag=false;//默认邻接表中不含孤立点
	int startId = 0;
public:
    UndirectedGraphData() {
	}
	UndirectedGraphData(const vector>&edges) {
		this->edges = edges;
		adjaList = undirectedEdgeToAdjaList(edges);
		edgeMap = undirectedEdgeToValueMap(edges);
	}
	UndirectedGraphData(const vector>& edges) { //仅限权值为整数的图
		transform(edges.begin(), edges.end(), std::back_inserter(this->edges), [](const vector& v) {return UndirectedEdge{v}; });
		adjaList = undirectedEdgeToAdjaList(this->edges);
		edgeMap = undirectedEdgeToValueMap(this->edges);
	}
	UndirectedGraphData(map>& adjaList) { //仅限没有权值的图
		this->adjaList = adjaList;
		for (auto& v : adjaList) {
			for (auto vi : v.second)if (v.first < vi)edges.push_back(UndirectedEdge(vector{v.first, vi, 0}));
		}
		edgeMap = undirectedEdgeToValueMap(edges);
	}
	void setNumV(int n, int startId = 0) { //startId一般是0或1,可以大于1
		allPointFlag = true;
		for (int i = startId; i < startId + n; i++)adjaList[i];
		this->startId = startId;
	}
	int getNumV() const {
		return adjaList.size();
	}
	int getNumE() const {
		return edges.size();
	}
private:
	//输入无向边集{{1,2}{1,3}{2,3}},输出邻接表{1:{2,3},2:{1,3},3:{1,2}}
	static map> undirectedEdgeToAdjaList(const vector>& v)
	{
		map> ans;
		for (auto& vi : v) {
			ans[vi.a].push_back(vi.b);
			ans[vi.b].push_back(vi.a);
		}
		return ans;
	}
	//输入无向带权边集,输出边和权的映射
	static map, T> undirectedEdgeToValueMap(const vector>& v)
	{
		map, T>m;
		for (auto& vi : v) {
			m[{vi.a, vi.b}] = vi.dist;
			m[{vi.b, vi.a}] = vi.dist;
		}
		return m;
	}
};
class UndirectedGraph
{
public:
	//无向拓扑排序,输入无向无环图{{1,2}{1,3}{4,3}}的邻接表和指定根1,输出父节点表{4:3, 3:1, 2:1}
	static map undirectedEdgeToFatherList(UndirectedGraphData &g, int root)
	{
		auto& m = g.adjaList;
		mapvisit;
		mapfa;
		queueq;
		q.push(root);
		visit[root] = 1;
		while (!q.empty()) {
			int id = q.front();
			q.pop();
			for (auto c : m[id]) {
				if (visit[c] == 0)q.push(c), fa[c] = id;
				visit[c] = 1;
			}
		}
		return fa;
	}
	//根据无向图的邻接表判断是否有环
	static bool hasCircle(const UndirectedGraphData& g)
	{
		auto& m = g.adjaList;
		vectorkeys; //auto keys = getFirst(m);
		transform(m.begin(), m.end(), std::back_inserter(keys), [](const pair>& p) {return p.first; });
		int minkey = *min_element(keys.begin(), keys.end());
		int maxKey = *max_element(keys.begin(), keys.end());
		Union unions(maxKey - minkey + 1);
		map, int>mp;
		for (auto& mi : m) {
			for (auto k : mi.second) {
				if (mp[make_pair(k, mi.first)])continue;
				if (unions.inSame(k - minkey, mi.first - minkey))return true;
				unions.merge(k - minkey, mi.first - minkey);
				mp[make_pair(mi.first, k)] = 1;
			}
		}
		return false;
	}
	//给定一个2n个点的图,选出n条边,刚好覆盖这2n个点
	static vector>> getEdgeCover(int n, UndirectedGraphData& g)
	{
		auto& v = g.edges;
		DancingLink d(v.size(), n * 2, v.size() * 2);
		for (int i = 0; i < v.size(); i++) {
			d.push(i, v[i].a + 1);
			d.push(i, v[i].b + 1);
		}
		vector>>ans;
		vector> vrow = d.getAllAns();
		for (auto vi : vrow) {
			vector>vans; //getNumFromId(v, vi)
			transform(vi.begin(), vi.end(), std::back_inserter(vans), [&](int id) {return v[id]; });
			ans.push_back(vans);
		}
		return ans;
	}
};
class Kruskal
{
public:
	//计算最小生成树,结果按照边从小到大排序,出参treeNum是森林中树的数量
	static vector> minCostConnectPoints(int n, vector>& v, int& treeNum)
	{
		sort(v.begin(), v.end(), cmp);
		Union unions(n);
		vector>ans;
		for (int i = 0, j = 0; j < n - 1 && i < v.size(); i++)
		{
			if (unions.inSame(v[i].a, v[i].b))continue;
			unions.merge(v[i].a, v[i].b);
			ans.push_back(v[i]);
			j++;
		}
		treeNum = unions.getRootNums();
		return ans;
	}
private:
	static bool cmp(UndirectedEdge& a, UndirectedEdge& b)
	{
		return a.dist < b.dist;
	}
};
class Prim
{
public:
	//计算最小生成树,结果按照边从小到大排序
	static vector> minCostConnectPoints(int n, map, int>& value)
	{
		vectorvisit_(n);
		vectorminLen(n);
		for (int i = 0; i < n; i++) {
			minLen[i] = INT_MAX;
			visit_[i] = false;
		}
		minLen[getStartId(n, value)] = INT_MIN;
		vector>ans;
		for (int i = 0; i < n; i++) {
			int id = getId(n, visit_, minLen);
			for (int j = 0; j < n; j++) {
				if (visit_[j] && value[make_pair(id, j)] == minLen[id]) {
					ans.push_back(make_pair(id, j));
					break;
				}
			}
			visit_[id] = true;
			fresh(n, visit_, minLen, value, id);
		}
		return ans;
	}
private:
	static int getStartId(int n, map, int>& value)
	{
		int m = INT_MAX;
		int ans = 0;
		for (int i = 0; i < n; i++) {
			for (int j = 0; j < n; j++) {
				if (i != j && m > value[make_pair(i, j)]) {
					m = value[make_pair(i, j)];
					ans = i;
				}
			}
		}
		return ans;
	}
	static int getId(int n, vector& visit_, vector& minLen)
	{
		int m = INT_MAX;
		int ans = 0;
		for (int i = 0; i < n; i++) {
			if (!visit_[i] && m > minLen[i]) {
				m = minLen[i];
				ans = i;
			}
		}
		return ans;
	}
	static void fresh(int n, vector& visit_, vector& minLen, map, int>& value, int id)
	{
		for (int i = 0; i < n; i++) {
			if (!visit_[i])minLen[i] = min(minLen[i], value[make_pair(i, id)]);
		}
	}
};

五,有向图、单源最短路径、连通分量、拓扑排序


template
struct DirectedEdge
{
	DirectedEdge() {
		a = b = dist = 0;
	};
	DirectedEdge(vectorv) {
		a = v[0], b = v[1], dist = v[2];
	}
	int a;//端点a的id
	int b;//端点b的id
	T dist;//从a到b的距离
};
template
struct DirectedGraphData
{
public:
	vector>edges; //边集,无法表示孤立点
	map, T>edgeMap; //边集,无法表示孤立点
	map>adjaList;//邻接表,孤立点是否出现取决于allPointFlag
	bool allPointFlag = false;//默认邻接表中不含孤立点
	int startId = 0;
public:
    DirectedGraphData(){
	}
	DirectedGraphData(const vector>& edges) {
		this->edges = edges;
		adjaList = directedEdgeToAdjaList(edges);
		edgeMap = directedEdgeToValueMap(edges);
	}
	DirectedGraphData(const vector>& edges) { //仅限权值为整数的图
		transform(edges.begin(), edges.end(), std::back_inserter(this->edges), [](const vector& v) {return DirectedEdge{v}; });
		adjaList = directedEdgeToAdjaList(this->edges);
		edgeMap = directedEdgeToValueMap(this->edges);
	}
	DirectedGraphData(map>& adjaList) { //仅限没有权值的图
		this->adjaList = adjaList;
		for (auto& v : adjaList) {
			for (auto vi : v.second)edges.push_back(DirectedEdge({v.first, vi, 0}));
		}
		edgeMap = directedEdgeToValueMap(edges);
	}
	void setNumV(int n, int startId = 0) { //startId一般是0或1,可以大于1
		allPointFlag = true;
		for (int i = startId; i < startId + n; i++)adjaList[i];
		this->startId = startId;
	}
	int getNumV() const {
		return adjaList.size();
	}
	int getNumE() const {
		return edges.size();
	}
private:
	//输入有向边集{{1,2}{1,3}{2,3}},输出邻接表{1:{2,3},2:{3}}
	static map> directedEdgeToAdjaList(const vector>& v)
	{
		map> ans;
		for (auto& vi : v) {
			ans[vi.a].push_back(vi.b);
			ans[vi.b];
		}
		return ans;
	}
	//输入有向带权边集,输出边和权的映射
	static map, int> directedEdgeToValueMap(const vector>& v)
	{
		map, int>m;
		for (auto& vi : v) {
			m[{vi.a, vi.b}] = vi.dist;
		}
		return m;
	}
};
class DirectedGraph
{
public:
	//构建有向图的反向图
	static map> reverseGraph(const DirectedGraphData &g)
	{
		auto& m = g.adjaList;
		map> ans;
		for (auto& mi : m) {
			for (auto& k : mi.second)ans[k].push_back(mi.first);
		}
		return ans;
	}
	//求有向无环图中的最长路径长度,出参nextNode是每个点的后继,len是每个点出发的最长路径长度
	static int getLongestPath(map>& m, map& nextNode, map& len)
	{
		int ans = 0;
		for (auto& ai : m)ans = max(ans, dp(m, nextNode, len, ai.first));
		return ans;
	}
	//判断是否有环
	static bool hasCircle(int numCourses, map>& m)
	{
		mapvisitt;//单次访问标记
		mapflag;//所有访问标记
		for (int i = 0; i < numCourses; i++)
		{
			if (flag[i])continue;
			if (!canFinish(m, i, visitt, flag))return true;
		}
		return false;
	}

private:
	static int dp(map>& m, map& nextNode, map& len, int id)
	{
		if (len[id])return len[id];
		len[id] = 1, nextNode[id] = -1; //无后继的则是 - 1
		for (auto k : m[id]) {
			if (len[id] < dp(m, nextNode, len, k) + 1) {
				len[id] = dp(m, nextNode, len, k) + 1;
				nextNode[id] = k;
			}
		}
		return len[id];
	}
	static bool canFinish(map>& m, int loc, map& visitt, map& flag) {
		if (visitt[loc] == 1)return false;
		if (flag[loc] == 1)return true;
		visitt[loc] = 1, flag[loc] = 1;
		for (int k : m[loc])if (!canFinish(m, k, visitt, flag))return false;
		visitt[loc] = 0;
		return true;
	}
};
class Dijskra//求最短路,适用于不存在负权值的边的图
{
public:
	static map shortestPath(map>& m, map, int>& value, int n, int src)
	{
		mapdis;
		priority_queue< Node, vector< Node>, cmp>que;
		mapvisit;
		for (int i = 0; i < n; i++)dis[i] = INT_MAX;
		que.push({ src,0 });
		dis[src] = 0;
		while (!que.empty())
		{
			Node nod = que.top();
			que.pop();
			if (visit[nod.id])continue;
			visit[nod.id] = 1;
			for (auto& vi : m[nod.id]) {
				if (nod.len + value[{nod.id, vi}] < dis[vi]) {
					que.push({ vi, dis[vi] = nod.len + value[{nod.id, vi}] });
				}
			}
		}
		return dis;
	}
private:
	struct Node
	{
		int id;
		int len;
	};
	class cmp
	{
	public:
		bool operator()(Node a, Node b)
		{
			return a.len > b.len;
		}
	};
};
class BellmanFord //求最短路,适用于不存在负权值的环的图
{
public:
	static map shortestPath(const DirectedGraphData& g, int src)
	{
		mapdis;
		int n = g.getNumV();
		for (int i = 0; i < n; i++)dis[i] = INT_MAX;
		dis[src] = 0;
		for (int i = 0; i < n; i++) {
			if (!refresh(g.edgeMap, dis))break;
			if (i == n - 1)return map{}; //有负环
		}
		return dis;
	}
private:
	static inline bool refresh(const map, int>& value, map&dis)
	{
		bool flag = false;
		auto dis2 = dis;
		for (auto& e : value) {
			if (dis2[e.first.second] > ((long long)dis[e.first.first]) + e.second) {
				dis2[e.first.second] = ((long long)dis[e.first.first]) + e.second, flag = true;
			}
		}
		dis = dis2;
		return flag;
	}
};
class SPFA //求最短路,适用于不存在负权值的环的图
{
public:
	static map shortestPath(const DirectedGraphData& g, int src)
	{
		mapdis;
		mapinQueue;
		mapvisit;
		int n = g.getNumV();
		for (int i = 0; i < n; i++)dis[i] = INT_MAX;
		dis[src] = 0;
		queueq;
		q.push(src);
		visit[src]++;
		inQueue[src] = true;
		while (!q.empty()) {
			int t = q.front();
			q.pop();
			inQueue[t] = false;
			auto v = refresh(dis, t, g);
			for (auto vi : v) {
				if (inQueue[vi])continue;
				q.push(vi);
				inQueue[vi] = true;
				if (++visit[vi] >= n)return map{};//存在负环
			}
		}
		return dis;
	}
private:
	static inline vector refresh(map&dis, int t, const DirectedGraphData& g)
	{
		vectorans;
		auto it = g.adjaList.find(t);
		if (it == g.adjaList.end())return ans;
		long long d = dis[t];
		for (auto vi : it->second) {
			if (dis[vi] > d + g.edgeMap.at(make_pair(t, vi))) {
				dis[vi] = d + g.edgeMap.at(make_pair(t, vi));
				ans.push_back(vi);
			}
		}
		return ans;
	}
};
//不区分有向图和无向图的通用操作
class GraphOpt
{
public:
	//根据点集取子图,输入邻接表,输出邻接表
	static map> getSubGraph(map>& m, vector& v)
	{
		map>ans;
		mapmv;
		for (auto vi : v)mv[vi] = 1;
		for (auto vi : v) {
			for (auto mi : m[vi]) {
				if (mv[mi])ans[vi].push_back(mi);
			}
		}
		return ans;
	}
};
class SemiConnect
{
public:
	//半连通分量分割
	static vector> semiConnectComponent(map>& m)
	{
		vector>allans;
		mapvisit;
		for (auto& mi : m) {
			int k = mi.first;
			if (visit[k])continue;
			vectorans;
			DFS(m, visit, k, ans);
			allans.push_back(ans);
		}
		return allans;
	}
protected:
	//DFS从k开始遍历,记录所有节点最后一次访问的顺序的反序
	static void DFS(map>& m, map& visit, int k, vector& ans)
	{
		if (visit[k])return;
		visit[k] = 1;
		for (auto i : m[k])DFS(m, visit, i, ans);
		ans.insert(ans.begin(), k);
	}
};
class KosarajuStrongConnect :public DirectedGraph, public GraphOpt, public SemiConnect
{
public:
	//Kosaraju算法,强连通分量分割
	static vector> connectComponent(map>& m)
	{
		vector> semi = semiConnectComponent(m);
		auto m2 = reverseGraph(m);
		vector>allans;
		mapvisit;
		for (auto& s : semi) {
			auto m3 = getSubGraph(m2, s);
			for (auto& k : s) {
				if (visit[k])continue;
				vectorans;
				DFS(m3, visit, k, ans);
				allans.push_back(ans);
			}
		}
		return allans;
	}
	//强连通分量缩点,输入强连通分量列表,输出缩点后的邻接表
	static map> getPointGraph(vector>&v, map>&m)
	{
		mapg;
		map>ans;
		for (int i = 0; i < v.size(); i++)for (auto x : v[i])g[x] = i;
		for (auto &mi : m) {
			for (auto x : mi.second)
				if (g[x] != g[mi.first])
					ans[mi.first].push_back(x);
		}
		return ans;
	}
};
class TarjanDoubledirect
{
public:
	vector>cutb;//割边
	vectorcutv;//割点
	vector>conv;//点双连通分量的点集
	vector>convb;//点双连通分量的边集
	int cons = 0;//无向连通分量数目
	TarjanDoubledirect(int n, map>& m)
	{
		this->n = n;
		this->m = m;
		visit.resize(n);
		added.resize(n);
		dfn.resize(n);
		low.resize(n);
		for (int i = 0; i < n; i++)if (!visit[i]) {
			root = i;
			dfs(i);
			cons++;
		}
		FillConv();
	}
private:
	void dfs(int k)
	{
		visit[k] = true;
		low[k] = dfn[k] = dfnId++;
		bool cv = false;
		int chNum = 0;
		st.push(k);
		for (auto nk : m[k]) {
			if (isBackB(nk))low[k] = min(low[k], dfn[nk]);
			if (visit[nk])continue;
			chNum++;
			sFa.push(k);
			dfs(nk);
			sFa.pop();
			low[k] = min(low[k], low[nk]);
			vectorconv1;
			vectorconvb1;
			if (low[nk] >= dfn[k]) {
				cv = true;
				for (int time = INT_MAX; time; time--) {
					if (st.top() == nk)time = 1;
					conv1.push_back(st.top());
					added[st.top()] = true;
					for (auto i : m[st.top()])if (!added[i])convb1.push_back((long long)(st.top()) * n + i);
					st.pop();
				}
				if (conv1.size() > 1) {
					conv1.push_back(k);
					conv.push_back(conv1);
					convb.push_back(convb1);
				}
			}
			if (low[nk] >= dfn[nk])cutb.push_back(make_pair(k, nk));
		}
		if ((k != root && cv && chNum > 0) || (k == root && chNum > 1))cutv.push_back(k);
	}
	bool isBackB(int nk) // 判断从k到nk是不是后向边
	{
		return visit[nk] && (sFa.empty() || nk != sFa.top());//如果st.top()是nk,则是树边,不是后向边
	}
	void FillConv()//补充由单点组成的点连通分量
	{
		mapm;
		for (auto& ci : conv) {
			for (auto& k : ci)m[k] = 1;
		}
		vectorconv1(1);
		for (int i = 0; i < n; i++)if (m[i] == 0) {
			conv1[0] = i;
			conv.push_back(conv1);
			convb.push_back(vector());
		}
	}
	int n;
	int dfnId = 0;
	int root;
	vectorvisit;//DFS访问标记
	vectoradded;
	vectordfn;//首次访问的次序
	vectorlow;//通过一条后向边能达到的最小dfn
	map> m;//邻接表
	stacksFa;//用于判断父节点
	stackst;
};
class TarjanStrongConnect
{
public:
	vector>conv;//强连通分量的点集
	TarjanStrongConnect(int n, map>& m)
	{
		this->n = n;
		this->m = m;
		visit.resize(n);
		added.resize(n);
		dfn.resize(n);
		low.resize(n);
		for (int i = 0; i < n; i++)if (!visit[i]) {
			root = i;
			dfs(i);
		}
		FillConv();
	}
private:
	void dfs(int k)
	{
		visit[k] = true;
		low[k] = dfn[k] = dfnId++;
		bool cv = false;
		int chNum = 0;
		st.push(k);
		for (auto nk : m[k]) {
			if (isBackB(nk))low[k] = min(low[k], dfn[nk]);
			if (visit[nk])continue;
			chNum++;
			dfs(nk);
			low[k] = min(low[k], low[nk]);
		}
		vectorconv1;
		vectorconvb1;
		if (low[k] >= dfn[k]) {
			cv = true;
			for (int time = INT_MAX; time; time--) {
				if (st.top() == k)time = 1;
				conv1.push_back(st.top());
				added[st.top()] = true;
				st.pop();
			}
			conv.push_back(conv1);
		}
	}
	bool isBackB(int nk) // 判断从k到nk是不是后向边
	{
		return visit[nk] && !added[nk];
	}
	void FillConv()//补充由单点组成的点连通分量
	{
		mapm;
		for (auto& ci : conv) {
			for (auto& k : ci)m[k] = 1;
		}
		vectorconv1(1);
		for (int i = 0; i < n; i++)if (m[i] == 0) {
			conv1[0] = i;
			conv.push_back(conv1);
		}
	}
	int n;
	int dfnId = 0;
	int root;
	vectorvisit;//DFS访问标记
	vectoradded;
	vectordfn;//首次访问的次序
	vectorlow;//通过一条后向边能达到的最小dfn
	map> m;//邻接表
	stackst;
};
//有向图拓扑排序
class DirectedTopoSort:public KosarajuStrongConnect
{
public:
	//有向无环图拓扑排序,输入n=3,g.edges={{0,1}{0,2}{1,2}}, 输出{0,1,2},有环则输出为空
	static vector topoSortNoCircle(int n, DirectedGraphData& g)
	{
		auto& v = g.edges;
		priority_queue, greater> q;
		mapm;
		for (auto &vi : v)m[vi.b]++;
		for (int i = 0; i < n; i++)if (m[i] == 0)q.push(i);
		vectorans;
		auto &mv = g.adjaList;
		while (!q.empty()) {
			int k = q.top();
			q.pop();
			ans.push_back(k);
			for (auto i : mv[k]) {
				m[i]--;
				if (m[i] == 0)q.push(i);
			}
		}
		return ans.size() == n ? ans : vector{};
	}
	//有向图拓扑排序
	static vector> topoSort(DirectedGraphData& g)
	{
		vector> con = connectComponent(g.adjaList);
		map> pointGraph = getPointGraph(con, g.adjaList);
		DirectedGraphDataga(pointGraph);
		vector vp = topoSortNoCircle(con.size(), ga);
		vector>ans;
		for (auto id : vp)ans.push_back(con[id]);
		return ans;
	}
};

六,网格图、回路链路、路径重建


class GridGraph
{
public:
	GridGraph(int row, int col)
	{
		this->row = row;
		this->col = col;
		initD4D8();
	}
	int gridId(int r, int c) //阅读顺序的id,先给col赋值再调用
	{
		return r * col + c;
	}
	vector getNeighbor4(int k)//获得四邻居的id
	{
		vectorans;
		for (int i = 0; i < 4; i++) {
			if (inBoard(k / col + dx4[i], k % col + dy4[i]))ans.push_back(k + d4[i]);
		}
		return ans;
	}
	vector getNeighbor8(int k)//获得八邻居的id
	{
		vectorans;
		for (int i = 0; i < 8; i++) {
			if (inBoard(k / col + dx8[i], k % col + dy8[i]))ans.push_back(k + d8[i]);
		}
		return ans;
	}
private:
	int row;
	int col;
	//二维坐标系的邻居偏移量
	const vector dx4{ 0,0,1,-1 };
	const vector dy4{ 1,-1,0,0 };
	const vector dx8{ 0,0,1,-1,1,1,-1,-1 };
	const vector dy8{ 1,-1,0,0 ,1,-1,1,-1 };
	//一维id坐标系的邻居偏移量
	vector d4;
	vector d8;
private:
	inline void initD4D8()
	{
		for (int i = 0; i < 4; i++)d4.push_back(gridId(dx4[i], dy4[i]));
		for (int i = 0; i < 8; i++)d8.push_back(gridId(dx8[i], dy8[i]));
	}
	inline bool inBoard(int r, int c)
	{
		return r >= 0 && r < row&& c >= 0 && c < col;
	}
	inline bool inBoard(int id)
	{
		return id >= 0 && inBoard(id / col, id % col);
	}
};
class Hierholzer {
public:
	stackeuler;//欧拉回路或链路,栈顶是起点
	Hierholzer(int n, map>& m, int type, int start = 0)//type=0是无向图 1是有向图
	{
		this->n = n;
		this->m = m;
		this->type = type;
		dfs(GetStartPoint(start));
	}
private:
	int GetStartPoint(int start)//链路是唯一起点,回路是指定起点
	{
		if (type == 0) {
			for (auto& mi : m) {
				if (mi.second.size() % 2)return mi.first;
				for (auto nk : mi.second)num[id(mi.first, nk)]++;
			}
			for (auto& ni : num)ni.second /= 2;
		}
		else {
			mapm2;
			for (auto& mi : m)for (auto nk : mi.second)m2[nk]++, num[id(mi.first, nk)]++;
			for (auto& mi : m)if (mi.second.size() > m2[mi.first])return mi.first;
		}
		return start;
	}
	void dfs(int k)
	{
		while (true) {
			while (mid[k] < m[k].size()) {
				if (num[id(k, m[k][mid[k]])]-- <= 0)mid[k]++;
				else sdfs.push(k), k = m[k][mid[k]];
			}
			euler.push(k);
			if (sdfs.empty()) return;
			k = sdfs.top(), sdfs.pop();
		}
	}
	inline long long id(int a, int b)
	{
		if (type == 0 && a > b)a ^= b ^= a ^= b;
		return (long long)a * n + b;
	}
	int n;
	int type;
	stacksdfs;
	map> m;//邻接表
	mapmid;
	mapnum;//支持多重边
};
class Hamilton
{
public:
	stack hami;//哈密顿链路
	Hamilton(int n, map>& m, int type)//type=0是无向图 1是有向图
	{
		this->n = n;
		this->m = m;
		this->type = type;
		for (int i = 0; i < n; i++)dfs(i);
	}
private:
	bool dfs(int k)
	{
		s.push(k);
		if (s.size() == n) {
			hami = s;
			return true;
		}
		for (auto nk : m[k]) {
			if (visit[k])continue;
			visit[k] = 1;
			if (dfs(nk))return true;
			visit[k] = 0;
		}
		s.pop();
		return false;
	}
	int n;
	int type;
	map> m;//邻接表
	mapvisit;
	stacks;
};
class ReBuild
{
public:
	stack ans;
	ReBuild(map& dis, map>& m, int col, int s, int e)
	{
		this->e = e;
		this->col = col;
		ans.push(e);
		dfs(dis, m, s);
	}
private:
	bool dfs(map& dis, map>& m, int k)
	{
		if (k == e)return true;
		for (int nex : m[k]) {
			if (dis[nex] == dis[k] + len(k, nex) && dfs(dis, m, nex)) {
				ans.push(k);
				return true;
			}
		}
		return false;
	}
	int len(int s, int e)
	{
		if (s / col == e / col)return abs(s - e);
		return abs(s - e) / col;
	}
	int col;
	int e;
};

七,test


template
static bool isSame(const vector& v1, const vector& v2)
{
	if (v1.size() - v2.size())return false;
	for (int i = 0; i < v1.size(); i++)if (v1[i] != v2[i])return false;
	return true;
}
#define EXPECT_VEC_EQ(a,b) if(!isSame((a),(b))){cout<<"ERROR!!!!!!!!!\n";return false;}
#define EXPECT_EQ(a,b) if(a!=b){cout<<"ERROR!!!!!!!!!\n";return false;}


bool test1()
{
	TreeNode t1(1), t2(2), t3(3), t4(4);
	t1.left = &t2, t1.right = &t3, t2.left = &t4;
	auto p = &t1;
	EXPECT_EQ(MaxDepth(p), 3);
	EXPECT_EQ(MinDepth(p), 2);
	vectorpre{ 1, 2, 4, 3 }, post{ 4, 2, 3, 1 }, inorder{ 4, 2, 1, 3 };
	EXPECT_VEC_EQ(PreorderTraversal(p), pre);
	EXPECT_VEC_EQ(PostorderTraversal(p), post);
	EXPECT_VEC_EQ(InorderTraversal(p), inorder);
	auto p2 = BuildTree(pre, inorder);
	EXPECT_EQ(IsSameTree(p, p2), true);
	p2 = BuildTree2(inorder, post);
	EXPECT_EQ(IsSameTree(p, p2), true);
	EXPECT_EQ(CountNodes(p), 4);
	p2 = CopyTree(p);
	EXPECT_EQ(IsSameTree(p, p2), true);
	InvertTree(p2);
	EXPECT_EQ(IsSameTree(p, p2), false);
	InvertTree(p2);
	EXPECT_EQ(IsSameTree(p, p2), true);
	return true;
}

bool testTreeArray()
{
	TreeArray<> t(100);
	t.add(1, 5);
	t.add(3, 10);
	EXPECT_EQ(t.getSum(1), 5);
	EXPECT_EQ(t.getSum(100), 15);
	return true;
}
bool testSegmentTree()
{
	SegmentTreeTypeSum<10000> st;
	int *num = st.getData();
	num[1] = 3, num[2] = 4, num[3] = 2, num[4] = 6;
	st.build(4);
	st.update(1, 5); //5 4 2 6
	EXPECT_EQ(st.query(1, 3), 11);
	EXPECT_EQ(st.queryPreSum(5), 1);
	EXPECT_EQ(st.queryPreSum(9), 2);
	EXPECT_EQ(st.queryPreSum(11), 3);
	SegmentTree<1, 10000> stMin;
	num = stMin.getData();
	num[1] = 3, num[2] = 4, num[3] = 2, num[4] = 6;
	stMin.build(4);
	stMin.update(2, 3, 5);//3 5 5 6
	EXPECT_EQ(stMin.query(1, 4), 3);
	EXPECT_EQ(stMin.query(3, 4), 5);
	return true;
}
bool test2()
{
	return testTreeArray() && testSegmentTree();
}

bool test3() //待完善
{
	TreeWithId tree{};
	tree.vals.push_back(0);
	tree.vals.push_back(1);
	tree.sons.push_back(vector{1});
	tree.sons.push_back(vector{});
	RMQ<1>{};
	LCA lca(tree);
	return true;
}

bool testUnion()
{
	Union u(5);
	EXPECT_VEC_EQ(u.getRoots(), (vector{0, 1, 2, 3, 4}));
	u.merge(1, 2);
	u.merge(1, 1);
	u.merge(3, 3);
	EXPECT_VEC_EQ(u.getRoots(), (vector{0, 2, 3, 4}));
	u.merge(4, 3);
	auto v = u.getRoots();
	EXPECT_VEC_EQ(u.getRoots(), (vector{0, 2, 3}));
	return true;
}
bool testDancingLink()//待完善
{
	return true;
}

bool testUndirectedGraph()//待完善
{
	return true;
}
bool testKruskal()//待完善
{
	Kruskal{};
	return true;
}
bool testPrim()//待完善
{
	Prim{};
	return true;
}
bool test4()
{
	return testUnion() && testDancingLink() && testUndirectedGraph() && testKruskal() && testPrim();
}

bool testDirectedGraph()//待完善
{
	DirectedGraph{};
	return true;
}
bool testDijskra()//待完善
{
	map> m;
	map, int> value;
	int n = 1;
	DijskraShortestPath(m, value, n, 0);
	return true;
}
bool testBellmanFord()//待完善
{
	return true;
}
bool testGraphOpt()//待完善
{
	GraphOpt{};
	return true;
}
bool testConnect()//待完善
{
	SemiConnect{};
	KosarajuStrongConnect{};
	int n = 1;
	map> m;
	TarjanDoubledirect{ n,m };
	TarjanStrongConnect{ n,m };
	return true;
}
bool testTopoSort() //待完善
{
	map>m;
	m[1].push_back(2);
	m[2].push_back(3);
	m[3].push_back(1);
	m[3].push_back(4);
	m[4].push_back(5);
	m[5].push_back(6);
	m[6].push_back(4);
	m[5].push_back(7);
	DirectedGraphDatag(m);
	auto ans = DirectedTopoSort::topoSort(g);
	return true;
}
bool test5()
{
	return testDirectedGraph() && testDijskra() && testBellmanFord() && testGraphOpt() && testConnect() && testTopoSort();
}

bool testGridGraph()//待完善
{
	GridGraph{ 0, 0 };
	return true;
}

bool testHierholzerAndHamilton()//待完善
{
	map> m;
	map, int> value;
	int n = 1;
	Hierholzer{ n,m,0,0 };
	Hamilton{ n,m,0 };
	return true;
}
bool testReBuild()//待完善
{
	map> m;
	map dis;
	ReBuild{ dis,m,0,0,0 };
	return true;
}
bool test6()
{
	return testGridGraph() && testHierholzerAndHamilton() && testReBuild();
}

bool hasCircleWithOne(vector>& matrix)
{
	GridGraph opt(matrix.size(), matrix[0].size());
	map>m;
	for (int i = 1; i < matrix.size(); i++)for (int j = 0; j < matrix[0].size(); j++)
		if (matrix[i][j] == 1 && matrix[i - 1][j] == 1)
			m[opt.gridId(i, j)].push_back(opt.gridId(i - 1, j)), m[opt.gridId(i - 1, j)].push_back(opt.gridId(i, j));
	for (int i = 0; i < matrix.size(); i++)for (int j = 1; j < matrix[0].size(); j++)
		if (matrix[i][j] == 1 && matrix[i][j - 1] == 1)
			m[opt.gridId(i, j)].push_back(opt.gridId(i, j - 1)), m[opt.gridId(i - 1, j)].push_back(opt.gridId(i, j));
	return HasUndirectedCircle(m);
}
bool testHasCircleWithOne()//待完善
{
	vector>v{ {1,0},{1,1} };
	EXPECT_EQ(hasCircleWithOne(v), false);
	v[0][1] = 1;
	EXPECT_EQ(hasCircleWithOne(v), true);
	return true;
}

int main()
{
	if (test1() && test2() && test3() && test4() && test5() && test6() && testHasCircleWithOne())cout << "test succ!";
	return 0;
}

你可能感兴趣的:(算法,java,数据结构)