代码随想录|647. 回文子串,516.最长回文子序列

647. 回文子串

1.dp含义

dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是,则dp[i][j]为true,否则为false。

2.dp递推公式

整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

3.dp初始化

dp初始化为false

4.遍历顺序

要从前往后遍历,为什么呢,首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,再对dp[i][j]进行赋值true的。

dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:

代码随想录|647. 回文子串,516.最长回文子序列_第1张图片

所以我们应该从后往前遍历字符串

5.推导dp

举例,输入:"aaa",dp[i][j]状态如下:

代码随想录|647. 回文子串,516.最长回文子序列_第2张图片

图中有6个true,所以就是有6个回文子串。

注意因为dp[i][j]的定义,所以j一定是大于等于i的(从遍历顺序也可以看出来),那么在填充dp[i][j]的时候一定是只填充右上半部分

代码实现

class Solution {
    public int countSubstrings(String s) {
        int m=s.length();
        //dp含义:dp[i][j]表示区间范围[i][j]的子串是否是回文子串,如果是,那么dp[i][j]为true,否则为false
        boolean[][] dp=new boolean[m][m];
        int result=0;
     
        for(int i=m-1;i>=0;i--){//注意倒序遍历
            for(int j=i;j

516.最长回文子序列

回文子串是要连续的,回文子序列可不是连续的!

1.dp含义

dp[i][j]:字符串s在[i,j]范围内最长的回文子序列的长度为dp[i][j].

2.确定递推公式

如果s[i]与s[j]相同,那么dp[i][j]=dp[i+1][j-1]+2;

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1][j]。

加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]=max(dp[i+1][j],dp[i][j-1])

3.初始化

当i和j相同时,子序列就是一个字符,此时dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1,其他情况dp[i][j]初始化为0就行,这样递推公式:dp[i][j]=max(dp[i+1][j],dp[i][j-1]);中dp[i][j]才不会被初始值覆盖

4.遍历顺序

从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1],如图

代码随想录|647. 回文子串,516.最长回文子序列_第3张图片

5.推导dp

代码随想录|647. 回文子串,516.最长回文子序列_第4张图片

注意这里我们的结果返回位置在右上角

代码实现

class Solution {
    public int longestPalindromeSubseq(String s) {
          int m=s.length();
        //dp含义:dp[i][j]表示区间范围[i][j]子序列的长度
        int[][] dp=new int[m][m];
        //初始化,当i==j的时候,表示的子序列就是一个字符,那么肯定是回文的且长度为1
        for(int i=0;i=0;i--){
          for(int j=i+1;j

你可能感兴趣的:(算法训练营,算法,数据结构)