小波神经网络

姓名:程祖晗

学号:19021210938

【嵌牛导读】随着优化算法的不断研究,神经网络已经深入到许多领域,解决了许多实际问题,并引发了人类不断地思考。本篇讨论了小波神经网络的相关知识。

【嵌牛鼻子】BP神经网络  小波变换   小波神经网络

【嵌牛正文】

一、BP神经网络

BP 网络的实现过程主要分成两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层到达输出层,第二阶段是误差的反向传播,从输出层经过隐含层到达输入层。误差传递完后,依次调节输入层和隐含层之间的权值和偏置,以及隐含层和输出层之间的权值和偏置。如图1所示:


BP神经网络的神经元如图2所示:

其中,激活函数为Sigmoid函数,表达式为:

二、小波神经网络

2.1小波变换

小波变换是以 Fourier 分析为基础的一种新的数学变换手段,它克服了 Fourier变换的局限性以及加窗 Fourier 变换的窗口不变的缺点。小波变换主要通过伸缩和平移实现多尺度细化,突出所要处理的问题细节,有效提取局部信息。

2.2小波神经网络

小波神经网络是改进的BP网络,将原先的隐含层的Sigmiod激活函数替换为小波函数——Morlet小波,其表达式为

本篇设计的4层小波神经网络的模型图如图3所示:

2.3模型的建立

a.初始化各项参数

在图3的网络设计中,为输入样本,为输出样本,分别为输入层、隐含层、输出层节点,为各节点的连接权值。

b.前向计算

隐含层1的输入为所有输入的加权和:,隐含层1的输出为。其余隐含层的输入输出及输出层与1类似,在此不再赘述。

c.误差反向传播

误差反向传播采用梯度下降算法调整各层间的权值,即权值修正过程。权值修正方式有两种,一是按输入样本逐次修正,二是全部样本输入后再修正。本篇采用第一种方法。


根据误差函数修正权值和小波因子,为了避免算法陷入局部最小值,加快其收敛速度,引入了动量因子,学习率为,公式分别如下表示:

总结:小波神经网络拥有小波变换的优点,避免了 BP 网络设计结构上的盲目性,但是隐含层的节点数以及各层之间的权值、尺度因子的初始化参数难以确定,会影响网络的收敛速度。在后续的学习中,可以尝试其他小波函数的神经网络,通过比较其最优结果构造小波神经网络。

你可能感兴趣的:(小波神经网络)