自己手写调度器,理解Python中的asyncio异步、事件循环与协程

本文将从一段最简单的“顺序执行”代码开始,逐步深入,来理解Python的asyncio事件循环和协程的底层实现原理。

先说下Python yield的作用,简单说就是在代码中可以 暂停/恢复 代码的执行,这是最关键的,这样就有机会中断函数的执行,把时间分配给其他函数,然后在适当时机从中断位置恢复。在Python中有yield的函数,叫生成器,协程就是基于生成器一步步发展而来。

一、顺序执行

在开始前,先从最简单的顺序执行开始,代码如下:

import time


def countdown(n):
    while n > 0:
        print('Down', n)
        time.sleep(1)
        n -= 1


def countup(stop):
    x = 0
    while x < stop:
        print('Up', x)
        time.sleep(1)
        x += 1


countdown(5)
countup(5)

顺序执行会依次执行两个函数,执行过程是同步的,输出内容如下:

Down 5
Down 4
Down 3
Down 2
Down 1
Up 0
Up 1
Up 2
Up 3
Up 4
二、并发执行

接下来,看下并发执行,并发执行的经典解决方案是 多线程,代码如下:

import time
import threading


def countdown(n):
    while n > 0:
        print('Down', n)
        time.sleep(1)
        n -= 1


def countup(stop):
    x = 0
    while x < stop:
        print('Up', x)
        time.sleep(1)
        x += 1


threading.Thread(target=countdown, args=(5,)).start()
threading.Thread(target=countup, args=(5,)).start()

当用两个线程执行上面的两个函数,输出内容就不能保证顺序了,并且Up和Down还可能连在一起,这是因为print函数是线程不安全的,输出如下:

Down 5
Up 0
UpDown 1
 4
UpDown 2
 3
Up 3
Down 2
UpDown  41

那么,有没有办法不用多线程,就能实现并发?答案是有的。

三、引入调度器

要在单个线程中实现并发,就需要让countdown和countup两个函数轮替执行,于是就引入调度器,这个调度器的作用类似Python里的事件循环:

import time
from collections import deque


class Scheduler:
    def __init__(self):
        self.ready = deque()  # 创建一个双向队列,存放待执行的函数

    def call_soon(self, func):
        self.ready.append(func)  # 从右侧添加函数

    def run(self):
        while self.ready:
            func = self.ready.popleft()  # 从左侧弹出
            func()  # 执行函数


sched = Scheduler()  # 调度器对象


def countdown(n):
    if n > 0:
        print('Down', n)
        time.sleep(1)  # 改成5,将会阻塞5秒,什么也做不了
        sched.call_soon(lambda: countdown(n - 1))  # 把 n -= 1 修改成这行,放入待执行队列


def countup(stop):
    def _run(x):  # 使用嵌套函数能达到一样的效果
        if x < stop:
            print('Up', x)
            time.sleep(1)
            sched.call_soon(lambda: _run(x + 1))
    _run(0)


sched.call_soon(lambda: countdown(5))  # 两个函数依次放入队列
sched.call_soon(lambda: countup(5))
sched.run()  # 依次执行 countdown,countup

上面的代码,用一个双向队列,已经实现了一个简单的调度器,countdown和countup会依次执行。但是,这样的调度器只是简单的轮替执行,并没有同时执行的效果,输出如下:

Down 5
Up 0
Down 4
Up 1
Down 3
Up 2
Down 2
Up 3
Down 1
Up 4

上面的调度器还有个问题,比如把countdown里的sleep时间改成5秒,那么这个调度器在轮替到countdown时,会等待5秒,一直卡在那里,所以是一种资源浪费,因为卡5秒的时间里,什么事也干不了。

于是,我们开始优化,让sleep函数延后执行,而不是立刻阻塞,这次引入 call_later 方法:

import time
from collections import deque


class Scheduler:
    def __init__(self):
        self.ready = deque()  # 创建一个双向队列,存放待执行的函数
        self.sleeping = []  # 列表当成队列使用,存放需要sleep的函数

    def call_soon(self, func):
        self.ready.append(func)  # 从右侧添加函数

    def call_later(self, delay, func):
        deadline = time.time() + delay  # 过期时间
        self.sleeping.append((deadline, func))
        self.sleeping.sort()  # 过期时间升序排序,最快过期的在最左侧,其实就是一个优先队列

    def run(self):  # 调度器主函数
        while self.ready or self.sleeping:
            if not self.ready:
                # 如果待执行队列为空,就去sleep队列拿出最先到期并待执行的函数
                # 拿出最先到期并待执行函数的目的是尽可能减少等待时间,提高并发的效率
                deadline, func = self.sleeping.pop(0)
                deta = deadline - time.time()
                if deta > 0:
                    time.sleep(deta)
                self.ready.append(func)

            while self.ready:
                func = self.ready.popleft()  # 从左侧弹出
                func()  # 执行函数


sched = Scheduler()  # 调度器对象


def countdown(n):
    if n > 0:
        print('Down', n)
        # time.sleep(4)

        # 因为没有暂停/恢复能力,用递归调用来间接地实现“恢复执行”的能力,
        # 下文将会用yield实现 暂停/恢复 能力
        sched.call_later(4, lambda: countdown(n - 1))  


def countup(stop):
    def _run(x):  # 使用嵌套函数能达到一样的效果
        if x < stop:
            print('Up', x)
            # time.sleep(1)
            sched.call_later(1, lambda: _run(x + 1))
    _run(0)


sched.call_soon(lambda: countdown(5))  # 两个函数依次放入队列
sched.call_soon(lambda: countup(20))
sched.run()  # 依次执行 countdown,countup

此时的输出,看着已经是并发执行了,一个简单的异步框架的雏形就出来了!

看到了吗,并发执行的关键是 Scheduler 这个类,它使用ready和sleeping两个队列共同实现轮换执行,真正的调度者是 Scheduler.run 方法,输出如下:

Down 5
Up 0
Up 1
Up 2
Up 3
Down 4
Up 4
Up 5
Up 6
Up 7
Down 3
Up 8
Up 9
Up 10
Up 11
Down 2
Up 12
Up 13
Up 14
Up 15
Down 1
Up 16
Up 17
Up 18
Up 19

下面,用优先队列代替列表排序,并用序列号解决deadline值相同时会对函数排序造成的异常(输出结果同上):

import time
import heapq
from collections import deque


class Scheduler:
    def __init__(self):
        self.ready = deque()  # 创建一个双向队列,存放待执行的函数
        self.sleeping = []  # 列表当成队列使用,存放需要sleep的函数
        self.sequence = 0

    def call_soon(self, func):
        self.ready.append(func)  # 从右侧添加函数

    def call_later(self, delay, func):
        self.sequence += 1  # 防止deadline相同时,对函数排序而报错
        deadline = time.time() + delay  # 过期时间
        # 使用优先队列 代替每次对列表排序
        heapq.heappush(self.sleeping, (deadline, self.sequence, func))

    def run(self):
        while self.ready or self.sleeping:
            if not self.ready:
                # 如果待执行队列为空,就去sleep队列拿出最先到期并待执行的函数
                # 拿出最先到期并待执行函数的目的是尽可能减少等待时间,提高并发的效率
                deadline, _, func = heapq.heappop(self.sleeping)
                deta = deadline - time.time()
                if deta > 0:
                    time.sleep(deta)
                self.ready.append(func)

            while self.ready:
                func = self.ready.popleft()  # 从左侧弹出
                func()  # 执行函数


sched = Scheduler()  # 调度器对象


def countdown(n):
    if n > 0:
        print('Down', n)
        # time.sleep(4)
        sched.call_later(4, lambda: countdown(n - 1))


def countup(stop):
    def _run(x):  # 使用嵌套函数能达到一样的效果
        if x < stop:
            print('Up', x)
            # time.sleep(1)
            sched.call_later(1, lambda: _run(x + 1))
    _run(0)


sched.call_soon(lambda: countdown(5))  # 两个函数依次放入队列
sched.call_soon(lambda: countup(20))
sched.run()  # 依次执行 countdown,countup
四、异步队列的实现

现在,我们在调度器的基础上,自己实现一个异步队列,整合到上文的源码中,文件名aproducer.py。

Scheduler使用两个队列来实现函数的并发执行,ready队列存放待执行的函数,sleeping队列让sleep函数延后执行,然后通过Scheduler.run来调度函数的执行。

AsyncQueue也使用两个队列来实现异步生产-消费模型,items队列存放生产消费的数据,waiting队列实现异步非阻塞地消费数据(通过回调函数)。同时,异步队列还实现了一个close方法,来告知生产者、消费者队列是否关闭。

# aproducer.py

import time
import heapq
from collections import deque


class Scheduler:
    def __init__(self):
        self.ready = deque()  # 创建一个双向队列,存放待执行的函数
        self.sleeping = []  # 列表当成队列使用,存放需要延迟的函数
        self.sequence = 0

    # 立即执行的函数入待执行队列
    def call_soon(self, func):
        self.ready.append(func)  # 从右侧添加函数

    # 等待执行的函数入等待队列
    def call_later(self, delay, func):
        self.sequence += 1  # 防止deadline相同时,对函数排序而报错
        deadline = time.time() + delay  # 过期时间
        # 使用优先队列 代替每次对列表排序
        heapq.heappush(self.sleeping, (deadline, self.sequence, func))

    def run(self):
        while self.ready or self.sleeping:
            if not self.ready:
                # 如果待执行队列为空,就去sleep队列拿出最先到期并待执行的函数
                # 这样做的目的是尽可能减少等待时间,提高并发的效率
                deadline, _, func = heapq.heappop(self.sleeping)
                deta = deadline - time.time()
                if deta > 0:
                    time.sleep(deta)
                self.ready.append(func)

            while self.ready:
                func = self.ready.popleft()  # 从左侧弹出
                func()  # 执行函数


sched = Scheduler()  # 调度器对象


class Result:
    def __init__(self, value=None, exc=None):
        self.value = value
        self.exc = exc

    def result(self):
        if self.exc:
            raise self.exc
        else:
            return self.value


class QueueClosed(Exception):
    pass


class AsyncQueue:
    def __init__(self):
        self.items = deque()
        self.waiting = deque()
        self._closed = False

    def close(self):
        self._closed = True
        if self.waiting and not self.items:
            for func in self.waiting:
                sched.call_soon(func)

    def put(self, item):
        if self._closed:
            raise QueueClosed()

        self.items.append(item)
        if self.waiting:
            func = self.waiting.popleft()
            # func可能会递归调用,因此不要立即执行,同样由调度器来执行
            sched.call_soon(func)

    def get(self, callback):
        if self.items:
            callback(Result(value=self.items.popleft()))
        else:  # 如果队列为空,把get放入等待队列,等队列非空时执行
            if self._closed:
                callback(Result(exc=QueueClosed()))
            else:
                self.waiting.append(lambda: self.get(callback))


def producer(q, count):
    def _run(n):
        if n < count:
            print('Producing', n)
            q.put(n)
            sched.call_later(1, lambda: _run(n + 1))
        else:
            print('Producer done')
            q.close()
    _run(0)


def consumer(q):
    def _consum(result):
        try:
            item = result.result()
            print('Consuming', item)
            sched.call_soon(lambda: consumer(q))
        except QueueClosed:
            print('Consumer done')
    q.get(callback=_consum)


q = AsyncQueue()
sched.call_soon(lambda: producer(q, 10))
sched.call_soon(lambda: consumer(q))
sched.run()

输出内容如下:

Producing 0
Consuming 0
Producing 1
Consuming 1
Producing 2
Consuming 2
Producing 3
Consuming 3
Producing 4
Consuming 4
Producing 5
Consuming 5
Producing 6
Consuming 6
Producing 7
Consuming 7
Producing 8
Consuming 8
Producing 9
Consuming 9
Producer done
Consumer done
五、引入yield

上文实现的调度器,本质上也是顺序执行的,只是效果上出现了不同函数之间切换执行。

这次,我们引入yield,这样我们就获得了 暂停/恢复 代码执行的能力。由此,我们可以实现一个基于协程的调度器,文件名yieldo.py。

# yieldo.py

import time
import heapq
from collections import deque


# 实现一个可等待类,利用yield的可暂停/恢复特性,给switch函数切换任务使用
class Awaitable:
    def __await__(self):
        yield  # yield的作用类似中断,让代码在此处暂停,暂时交出执行权,稍后再回来恢复


def switch():
    # 返回可等待对象,使用 await switch() 会调用 __await__,在 yield 处暂停
    return Awaitable()


class Scheduler:
    def __init__(self):
        self.ready = deque()  # 待执行队列
        self.sleeping = []  # 等待队列
        self.current = None  # 当前正在执行的协程函数
        self.sequence = 0  # 优先队列的第二个排序列

    async def sleep(self, delay):
        deadline = time.time() + delay
        self.sequence += 1
        heapq.heappush(self.sleeping, (deadline, self.sequence, self.current))
        self.current = None  # 置为空,则current不再入ready队列

        # await配合Awaitable实例对象,
        # 将会停在Awaitable里的yield,暂时退出函数,直到用send(None)恢复
        # switch函数是为了把细节封装起来,也可以直接 await Awaitable()
        await switch()

    def new_task(self, coro):
        self.ready.append(coro)

    def run(self):
        while self.ready or self.sleeping:
            if not self.ready:
                # 从优先队列(最小堆)弹出等待时间最少的待执行函数
                deadline, _, coro = heapq.heappop(self.sleeping)
                delta = deadline - time.time()
                if delta > 0:
                    time.sleep(delta)  # 真正的阻塞等待
                self.ready.append(coro)

            self.current = self.ready.popleft()
            try:
                # 调用协程的send方法,跟触发一个生成器函数的效果一样,
                # 第一次send则开始执行协程函数,并停在调用链路最底下的yield处,
                # 后面执行send则从yield处恢复,继续执行,该返回(return)则返回
                self.current.send(None)

                if self.current:
                    self.ready.append(self.current)
            except StopIteration:
                # Awaitable实例对象暂停一次后,第二次从暂停处恢复,并引发停止迭代异常,
                # 使__await__执行结束,switch函数得以返回,达到暂停/恢复的目的
                pass


sched = Scheduler()


async def countdown(n):
    while n > 0:
        print('Down', n)
        await sched.sleep(4)  # 把 time.sleep(4) 换成这行,达到类似 asyncio.sleep 的效果
        n -= 1


async def countup(stop):
    x = 0
    while x < stop:
        print('Up', x)
        await sched.sleep(1)  # 把 time.sleep(1) 换成这行
        x += 1


sched.new_task(countdown(5))  # 这里相当于 asyncio.create_task 的效果
sched.new_task(countup(20))
sched.run()  # 这里相当于 asyncio.run

执行yieldo.py的输出结果:

Down 5
Up 0
Up 1
Up 2
Up 3
Down 4
Up 4
Up 5
Up 6
Up 7
Down 3
Up 8
Up 9
Up 10
Up 11
Down 2
Up 12
Up 13
Up 14
Up 15
Down 1
Up 16
Up 17
Up 18
Up 19

下面是使用asyncio写的等价代码,输出结果与yieldo.py的一样:

import asyncio


async def countdown(n):
    while n > 0:
        print('Down', n)
        await asyncio.sleep(4)
        n -= 1


async def countup(stop):
    x = 0
    while x < stop:
        print('Up', x)
        await asyncio.sleep(1)
        x += 1


async def main():
    t1 = asyncio.create_task(countdown(5))
    t2 = asyncio.create_task(countup(20))
    await t1
    await t2


asyncio.run(main())
六、基于协程的异步队列

在上一节,我们基于async/await关键字与yield的暂停/恢复能力,实现了一个异步调度器,进一步接近asyncio中的事件循环。

于是,我们用这种方法改良第四节中的异步队列,文件名yproducer.py:

# yproducer.py

import time
import heapq
from collections import deque


# 实现一个可等待类,利用yield的可暂停/恢复特性,给switch函数切换任务使用
class Awaitable:
    def __await__(self):
        yield  # yield的作用类似中断,让代码在此处暂停,暂时交出执行权,稍后再回来恢复


def switch():
    # 返回可等待对象,使用 await switch() 会调用 __await__,在 yield 处暂停
    return Awaitable()


class Scheduler:
    def __init__(self):
        self.ready = deque()  # 待执行队列
        self.sleeping = []  # 等待队列
        self.current = None  # 当前正在执行的协程函数
        self.sequence = 0  # 优先队列的第二个排序列

    async def sleep(self, delay):
        deadline = time.time() + delay
        self.sequence += 1
        heapq.heappush(self.sleeping, (deadline, self.sequence, self.current))
        self.current = None  # 置为空,则current不再入ready队列

        # await配合Awaitable实例对象,
        # 将会停在Awaitable里的yield,暂时退出函数,直到用send(None)恢复
        # switch函数是为了把细节封装起来,也可以直接 await Awaitable()
        await switch()

    def new_task(self, coro):
        self.ready.append(coro)

    def run(self):
        while self.ready or self.sleeping:
            if not self.ready:
                # 从优先队列(最小堆)弹出等待时间最少的待执行函数
                deadline, _, coro = heapq.heappop(self.sleeping)
                delta = deadline - time.time()
                if delta > 0:
                    time.sleep(delta)  # 真正的阻塞等待
                self.ready.append(coro)

            self.current = self.ready.popleft()
            try:
                # 调用协程的send方法,跟触发一个生成器函数的效果一样,
                # 第一次send则开始执行协程函数,并停在调用链路最底下的yield处,
                # 后面执行send则从yield处恢复,继续执行,该返回(return)则返回
                self.current.send(None)

                if self.current:
                    self.ready.append(self.current)
            except StopIteration:
                # Awaitable实例对象暂停一次后,第二次从暂停处恢复,并引发停止迭代异常,
                # 使__await__执行结束,switch函数得以返回,达到暂停/恢复的目的
                pass


sched = Scheduler()


# 上面的代码复用 第五节 中的内容,没有修改,主要看下面的内容
class QueueClosed(Exception):
    pass


class AsyncQueue:
    def __init__(self):
        self.items = deque()
        self.waiting = deque()
        self._close = False

    def close(self):
        self._close = True
        if self.waiting and not self.items:
            # 关闭异步队列时,把等着的consumer处理掉
            sched.ready.append(self.waiting.popleft())

    async def put(self, item):
        if self._close:
            raise QueueClosed()

        self.items.append(item)
        if self.waiting:
            # 如果有内容放入队列,立刻把等待队列中的consumer方法弹出,放到调度器的待执行队列
            sched.ready.append(self.waiting.popleft())

    async def get(self):
        while not self.items:
            if self._close:
                raise QueueClosed()

            # sched.current是consumer协程
            self.waiting.append(sched.current)
            sched.current = None  # 设为空,防止consumer多次入调度器的ready队列

            # 切到别的任务去,当异步队列有内容时,put方法把consumer交给调度器执行,
            # 调度器将恢复到这里继续执行,从而实现异步获取队列里的内容
            await switch()
        return self.items.popleft()


async def producer(q, count):
    for n in range(count):
        print('Producing', n)
        await q.put(n)
        await sched.sleep(1)

    print('Producer done')
    q.close()


async def consumer(q):
    try:
        while True:
            # 如果异步队列为空,get里面会暂停,切到别的任务,异步队列有内容时,再切回来继续执行
            # put往队列放内容,get切回来继续执行拿数据,put/get两者的协调执行由调度器的ready队列保证
            item = await q.get()
            print('Consuming', item)
    except QueueClosed:
        print('Consumer done')


q = AsyncQueue()
sched.new_task(producer(q, 10))
sched.new_task(consumer(q))
sched.run()

输出内容如下:

Producing 0
Consuming 0
Producing 1
Consuming 1
Producing 2
Consuming 2
Producing 3
Consuming 3
Producing 4
Consuming 4
Producing 5
Consuming 5
Producing 6
Consuming 6
Producing 7
Consuming 7
Producing 8
Consuming 8
Producing 9
Consuming 9
Producer done
Consumer done
七、收尾

上面的内容,已经实现了:

  1. 调度器Scheduler,可以执行异步任务
  2. 异步队列AsyncQueue,可以异步非阻塞地消费数据

最后,构造一个Task类,来包装协程,并把异步任务和异步队列的生产消费整合一下,文件名coro_callback.py:

# coro_callback.py

import time
from collections import deque
import heapq


class Scheduler:
    def __init__(self):
        self.ready = deque()
        self.sleeping = []
        self.current = None
        self.sequence = 0

    def call_soon(self, func):
        self.ready.append(func)

    # 基于回调
    def call_later(self, delay, func):
        self.sequence += 1
        deadline = time.time() + delay
        heapq.heappush(self.sleeping, (deadline, self.sequence, func))

    def run(self):
        while self.ready or self.sleeping:
            if not self.ready:
                deadline, _, func = heapq.heappop(self.sleeping)
                delta = deadline - time.time()
                if delta > 0:
                    time.sleep(delta)
                self.ready.append(func)

            while self.ready:
                func = self.ready.popleft()
                func()

    # 创建基于协程的任务
    def new_task(self, coro):
        self.ready.append(Task(coro))

    async def sleep(self, delay):
        self.call_later(delay, self.current)
        self.current = None
        await switch()


class Task:
    def __init__(self, coro):
        self.coro = coro

    def __call__(self):
        try:
            sched.current = self
            self.coro.send(None)
            if sched.current:
                sched.ready.append(self)
        except StopIteration:
            pass


class Awaitable:
    def __await__(self):
        yield


def switch():
    return Awaitable()


sched = Scheduler()


class AsyncQueue:
    def __init__(self):
        self.items = deque()
        self.waiting = deque()

    async def put(self, item):
        self.items.append(item)
        if self.waiting:
            sched.ready.append(self.waiting.popleft())

    async def get(self):
        if not self.items:
            self.waiting.append(sched.current)
            sched.current = None
            await switch()
        return self.items.popleft()


# 基于协程的任务
async def producer(q, count):
    for n in range(count):
        print('Producing', n)
        await q.put(n)
        await sched.sleep(1)

    print('Producer done')
    await q.put(None)  # 队列结束标志None


async def consumer(q):
    while True:
        item = await q.get()
        if item is None:
            break
        print('Consuming', item)
    print('Consumer done')


q = AsyncQueue()
sched.new_task(producer(q, 10))
sched.new_task(consumer(q))


# 基于回调的任务
def countdown(n):
    if n > 0:
        print('Down', n)
        # time.sleep(4)
        sched.call_later(4, lambda: countdown(n - 1))


def countup(stop):
    def _run(x):
        if x < stop:
            print('Up', x)
            # time.sleep(1)
            sched.call_later(1, lambda: _run(x + 1))

    _run(0)


sched.call_soon(lambda: countdown(5))
sched.call_soon(lambda: countup(20))
sched.run()

输出内容:

Producing 0
Consuming 0
Down 5
Up 0
Producing 1
Consuming 1
Up 1
Producing 2
Consuming 2
Up 2
Producing 3
Consuming 3
Up 3
Down 4
Producing 4
Consuming 4
Up 4
Producing 5
Consuming 5
Up 5
Producing 6
Consuming 6
Up 6
Producing 7
Consuming 7
Up 7
Down 3
Producing 8
Consuming 8
Up 8
Producing 9
Consuming 9
Up 9
Producer done
Consumer done
Up 10
Up 11
Down 2
Up 12
Up 13
Up 14
Up 15
Down 1
Up 16
Up 17
Up 18
Up 19

加餐:

把上文所讲的技术整合起来,实现一个网络IO调度器,文件名io_scheduler.py:

# io_scheduler.py
#
# An example of implementing I/O operations in the scheduler

from socket import *
import time
from collections import deque
import heapq
from select import select


# Callback based scheduler (from earlier)
class Scheduler:
    def __init__(self):
        self.ready = deque()  # Functions ready to execute
        self.sleeping = []  # Sleeping functions
        self.sequence = 0
        self._read_waiting = {}
        self._write_waiting = {}

    def call_soon(self, func):
        self.ready.append(func)

    def call_later(self, delay, func):
        self.sequence += 1
        deadline = time.time() + delay  # Expiration time
        # Priority queue
        heapq.heappush(self.sleeping, (deadline, self.sequence, func))

    def read_wait(self, fileno, func):
        # Trigger func() when fileno is readable
        self._read_waiting[fileno] = func

    def write_wait(self, fileno, func):
        # Trigger func() when fileno is writeable
        self._write_waiting[fileno] = func

    def run(self):
        while self.ready or self.sleeping or self._read_waiting or self._write_waiting:
            if not self.ready:
                # Find the nearest deadline
                if self.sleeping:
                    deadline, _, func = self.sleeping[0]
                    timeout = deadline - time.time()
                    if timeout < 0:
                        timeout = 0
                else:
                    timeout = None  # Wait forever

                # Wait for I/O (and sleep)
                can_read, can_write, _ = select(self._read_waiting,
                                                self._write_waiting, [], timeout)

                for fd in can_read:
                    self.ready.append(self._read_waiting.pop(fd))
                for fd in can_write:
                    self.ready.append(self._write_waiting.pop(fd))

                # Check for sleeping tasks
                now = time.time()
                while self.sleeping:
                    if now > self.sleeping[0][0]:
                        self.ready.append(heapq.heappop(self.sleeping)[2])
                    else:
                        break

            while self.ready:
                func = self.ready.popleft()
                func()

    def new_task(self, coro):
        self.ready.append(Task(coro))  # Wrapped coroutine

    async def sleep(self, delay):
        self.call_later(delay, self.current)
        self.current = None
        await switch()  # Switch to a new task

    async def recv(self, sock, maxbytes):
        self.read_wait(sock, self.current)
        self.current = None
        await switch()
        return sock.recv(maxbytes)

    async def send(self, sock, data):
        self.write_wait(sock, self.current)
        self.current = None
        await switch()
        return sock.send(data)

    async def accept(self, sock):
        self.read_wait(sock, self.current)
        self.current = None
        await switch()
        return sock.accept()


class Task:
    def __init__(self, coro):
        self.coro = coro  # "Wrapped coroutine"

    # Make it look like a callback
    def __call__(self):
        try:
            # Driving the coroutine as before
            sched.current = self
            self.coro.send(None)
            if sched.current:
                sched.ready.append(self)
        except StopIteration:
            pass


class Awaitable:
    def __await__(self):
        yield


def switch():
    return Awaitable()


sched = Scheduler()  # Background scheduler object

# ----------------


async def tcp_server(addr):
    sock = socket(AF_INET, SOCK_STREAM)
    sock.bind(addr)
    sock.listen(1)
    while True:
        client, addr = await sched.accept(sock)
        print('Connection from', addr)
        sched.new_task(echo_handler(client))


async def echo_handler(sock):
    while True:
        data = await sched.recv(sock, 10000)
        if not data:
            break
        await sched.send(sock, b'Got:' + data)
    print('Connection closed')
    sock.close()


sched.new_task(tcp_server(('', 30000)))
sched.run()

参考:
https://www.bilibili.com/video/BV1qz4y1Q7EY/?spm_id_from=333.337.search-card.all.click

你可能感兴趣的:(Python,算法,python,事件循环,asyncio,调度器,coroutine)