GAT(Graph Attention Network)在图结构的基础上,加上了注意力这个东东,这期我不装了,图NNer不搞PyG,感觉就是对不起巨人们的肩膀!此处吹爆PyG!
本文目标就是基于PyG,写个GAT的Demo来实现Cora图分类,这里Cora的读取我自己用sklearn和文本读取,也算是我自己的一点点贡献,方便后者用自己的数据集做二次开发。话不多说,直接上代码。
import os
import time
import random
import torch
import torch.nn.functional as F
from torch_geometric.nn import GATConv
from torch_geometric.data import Data
import numpy as np
import pandas as pd
import scipy.sparse as sp
from sklearn.preprocessing import LabelEncoder
#配置项
class configs():
def __init__(self):
# Data
self.data_path = r'./data/cora'
self.save_model_dir = './'
self.model_name = r'GAT'
self.seed = 2023
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.epoch = 500
self.in_features = 1433 #core ~ feature:1433
self.hidden_features = 16 # 隐层数量
self.output_features = 8 # core~paper-point~ 8类
self.learning_rate = 0.01
self.dropout = 0.5
self.istrain = True
self.istest = True
cfg = configs()
def seed_everything(seed=2023):
random.seed(seed)
os.environ['PYTHONHASHSEED']=str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
seed_everything(seed = cfg.seed)
# 读取Cora数据集 return geometric Data格式
def index_to_mask(index, size):
mask = np.zeros(size, dtype=bool)
mask[index] = True
return mask
def load_cora_data(data_path = cfg.data_path):
content_df = pd.read_csv(os.path.join(data_path,"cora.content"), delimiter="\t", header=None)
content_df.set_index(0, inplace=True)
index = content_df.index.tolist()
features = sp.csr_matrix(content_df.values[:,:-1], dtype=np.float32)
# 处理标签
labels = content_df.values[:,-1]
class_encoder = LabelEncoder()
labels = class_encoder.fit_transform(labels)
# 读取引用关系
cites_df = pd.read_csv(os.path.join(data_path,"cora.cites"), delimiter="\t", header=None)
cites_df[0] = cites_df[0].astype(str)
cites_df[1] = cites_df[1].astype(str)
cites = [tuple(x) for x in cites_df.values]
edges = [(index.index(int(cite[0])), index.index(int(cite[1]))) for cite in cites]
edges = np.array(edges).T
# 构造Data对象
data = Data(x=torch.from_numpy(np.array(features.todense())),
edge_index=torch.LongTensor(edges),
y=torch.from_numpy(labels))
idx_train = range(140)
idx_val = range(200, 500)
idx_test = range(500, 1500)
data.train_mask = index_to_mask(idx_train, size=labels.shape[0])
data.val_mask = index_to_mask(idx_val, size=labels.shape[0])
data.test_mask = index_to_mask(idx_test, size=labels.shape[0])
return data
class GAT(torch.nn.Module):
def __init__(self, in_channels, out_channels, heads=8, dropout=cfg.dropout, bias=True):
super(GAT, self).__init__()
self.conv1 = GATConv(in_channels, out_channels, heads=heads, concat=True, dropout=dropout, bias=bias)
self.conv2 = GATConv(heads * out_channels, out_channels, heads=heads, concat=False, dropout=dropout, bias=bias)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = F.dropout(x, p=0.6, training=self.training)
x = F.elu(self.conv1(x, edge_index))
x = F.dropout(x, p=0.6, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
class myGAT_run():
def train(self):
t = time.time()
dataset = load_cora_data()
model = GAT(dataset.num_features, cfg.output_features).to(cfg.device)
data = dataset
optimizer = torch.optim.Adam(model.parameters(), lr=cfg.learning_rate, weight_decay=5e-4)
model.train()
for epoch in range(cfg.epoch):
optimizer.zero_grad()
output = model(data)
preds = output.max(dim=1)[1]
loss_train = F.nll_loss(output[data.train_mask], data.y[data.train_mask].long())
correct = preds[data.train_mask].eq(data.y[data.train_mask]).sum().item()
acc_train = correct / int(data.train_mask.sum())
loss_train.backward()
optimizer.step()
loss_val = F.nll_loss(output[data.val_mask], data.y[data.val_mask].long())
correct = preds[data.val_mask].eq(data.y[data.val_mask]).sum().item()
acc_val = correct / int(data.val_mask.sum())
print('Epoch: {:04d}'.format(epoch + 1),
'loss_train: {:.4f}'.format(loss_train.item()),
'acc_train: {:.4f}'.format(acc_train),
'loss_val: {:.4f}'.format(loss_val.item()),
'acc_val: {:.4f}'.format(acc_val),
'time: {:.4f}s'.format(time.time() - t))
torch.save(model, os.path.join(cfg.save_model_dir, 'latest.pth')) # 模型保存
def infer(self):
#Create Test Processing
dataset = load_cora_data()
data = dataset
model_path = os.path.join(cfg.save_model_dir, 'latest.pth')
model = torch.load(model_path, map_location=torch.device(cfg.device))
model.eval()
output = model(data)
params = sum(p.numel() for p in model.parameters())
preds = output.max(dim=1)[1]
loss_test = F.nll_loss(output[data.test_mask], data.y[data.test_mask].long())
correct = preds[data.test_mask].eq(data.y[data.test_mask]).sum().item()
acc_test = correct / int(data.test_mask.sum())
print("Test set results:",
"loss= {:.4f}".format(loss_test.item()),
"accuracy= {:.4f}".format(acc_test),
'params={:.4f}k'.format(params/1024))
if __name__ == '__main__':
mygraph = myGAT_run()
if cfg.istrain == True:
mygraph.train()
if cfg.istest == True:
mygraph.infer()
Layer (type) | Output Shape | Param # |
Linear-1 | [-1, 64] | 91712 |
SumAggregation-2 | [-1, 8, 8] | 0 |
GATConv-3 | [-1, 64] | 64 |
Linear-4 | [-1, 64] | 4096 |
SumAggregation-5 | [-1, 8, 8] | 0 |
GATConv-6 | [-1, 8] | 8 |
Total params: 95,880≈93.88Kb,模型结构还是比较精简的。
在Cora数据集上,训练epoch=500,accuracy= 0.7590
后面文章考虑从代码的角度,来研究下Graph Embedding,且与GNNs的联系。