MQ(Message Queue)消息队列,是基础数据结构中“先进先出”的一种数据结构。指把要传输的数据(消息)放在队列中,用队列机制来实现消息传递——生产者产生消息并把消息放入队列,然后由消费者去处理。消费者可以到指定队列拉取消息,或者订阅相应的队列,由MQ服务端给其推送消息。
类似于数据库一样需要独立部署在服务器上的一种应用,提供接口给其他系统调用。
主要用于各个系统之间通信的解耦。
举例:
比如登陆系统,在登陆之后需要调用短信系统给用户发短信说已经登陆,同时还需要调用日志系统记录登陆日志,需要调用积分系统对登陆签到的积分进行增加 等等。
这种情况下,登陆系统和日志系统,短信系统,积分系统等等 强耦合,其中存在可能调用失败,信息丢失等风险,同时会提高系统复杂度。
比如说登陆之后调用日志系统失败,那么该次登陆的日志信息就会丢失,无法再找回。
而且顺序执行,会导致登陆系统运行效率低。
那么如果使用消息中间件,登陆之后只需要将任务推入到消息队列中,就不用去管了。其他系统则从队列中去获取任务。
实现解耦和异步调用 (异步是相对于同步而言,同步是就等待,当系统执行某个任务的时候,一定要等到该任务结束,系统才会继续往下执行,异步则不等待。)
同时还有可以实现横向拓展 安全可靠优点
JMS(Java Message Service),即Java消息服务,是一组Java应用程序接口(Java API),它提供创建、发送、接收、读取消息的服务。由Sun公司和它的合作伙伴设计的JMS API定义了一组公共的应用程序接口和相应语法,使得Java程序能够和其他消息组件进行通信。
AMQP,即Advanced Message Queuing Protocol,一个提供统一消息服务的应用层标准高级消息队列协议,是应用层协议的一个开放标准,为面向消息的中间件设计。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中间件不同产品,不同的开发语言等条件的限制。Erlang中的实现有RabbitMQ等。
在实际工作中什么样的业务场景,这个业务场景有个什么技术挑战,如果不用MQ可能会比较麻烦,包括现在用了MQ以后有哪些好处等等。
MQ的核心作用:解耦、异步、削锋。
场景一,最初A系统通过接口调用发送数据给BCD三个系统,如果D系统突然说:现在不需要数据了,你不用给我传数据了,这时候A系统只能修改代码,将调用D系统的代码删除;E系统又说需要这个数据,那么A系统负责人无奈,只能再去改代码… 再来点更加崩溃的事儿,A系统要时时刻刻考虑BCDE四个系统如果挂了咋办,要不要重发,要不要把消息存起来……?
总结:通过MQ发布订阅消息的模型,A系统就成功的跟其他系统解耦了。
面试技巧:你需要思考一下,在你自己的系统里面有没有类似的情况,一个系统或者模块,调用了多个系统或者模块,它们互相之间的调用非常复杂,并且维护起来很麻烦,但其实这个调用是不需要直接同步调用接口的,如果用MQ给它异步化解耦也是可以的,你就需要思考在你的项目里,是不是可以用MQ给它进行系统的解耦,可以自己组织一下语言回答。
(详情看文章中–异步发送)
场景二,还是ABCD四个系统,A系统收到一个请求,需要在自己本地写库,还需要往BCD三个系统写库,A系统自己写本地库需要3ms,往其他系统写库相对较慢,B系统200ms ,C系统350ms,D系统400ms,这样算起来,整个功能从请求到响应的时间为3ms+200ms+350ms+400ms=953ms,接近一秒,对于用户来说,点个按钮要等这么长时间,基本是无法接受的,侧面也反映出这家研发人员技术不咋地。
一般的互联网企业,对于用户请求响应的时间要求在100ms-200ms之间,这样,用户的眼睛存在视觉暂停现象,用户响应时间在此范围内就可以了,所以上面的现象是不可取的。
如果用了MQ,用户发送请求到A系统耗时3ms,A系统发送三条消息到MQ,假如耗时5ms,用户从发送请求到相应3ms+5ms=8ms,仅用了8ms,用户的体验非常好。
(减少高峰时期对服务器压力)
场景三,2020年爆发的这场新冠病毒,导致各大线上商城APP里面的口罩被抢购一空,在这种情况下,JD商城开启了一场每晚八点的抢购3Q口罩的活动,每天下午三点进行预约,晚上八点抢购,从JD商城刚上线这个活动,小明连续抢了近一个周,也算是见证了一个百万并发量系统从出现问题到完善的一个过程,最初第一天,抢购的时候,一百多万预约,到八点抢购估计也能有百万的并发量,可是第一天,到八点抢的时候,由于并发量太高,直接把JD服务器弄崩了,直接报了异常,可能JD在上线这个活动的时候也没能够想到会有那么高的并发,打了一个猝不及防,但是这只是在前一两天出现报异常的情况,后面却没有再出现异常信息,到后来再抢购只是响应的时间变得很慢,但是JD系统并没有崩溃,这种情况下一般就是用了MQ(或者之前用了MQ,这次换了个吞吐量级别更高的MQ),也正是利用了MQ的三大好处之一——削峰。
JD系统每天0—19点,系统风平浪静,结果一到八点抢购的时候,每秒并发达到百万,
假设JD数据库没秒能处理1.5w条并发请求(并非实际数据,主要为了举例),到八点抢购的时候,每秒并发百万,这直接导致系统异常,但是八点一过,可能也就几万用户在线操作,每秒的请求可能也就几百条,对整个系统毫无压力。
如果使用了MQ,每秒百万个请求写入MQ,因为JD系统每秒能处理1W+的请求,JD系统处理完然后再去MQ里面再拉取1W+的请求处理,每次不要超过自己能处理的最大请求量就ok,这样下来,等到八点高峰期的时候,系统也不会挂掉,但是近一个小时内,系统处理请求的速度是肯定赶不上用户的并发请求的,所以都会积压在MQ中,甚至可能积压千万条,但是高峰期过后,每秒只会有一千多的并发请求进入MQ,但是JD系统还是会以每秒1W+的速度处理请求,所以高峰期一过,JD系统会很快消化掉积压在MQ的请求,在用户那边可能也就是等的时间长一点,但是绝对不会让系统挂掉。
解耦:一个业务需要多个模块共同实现,或者一条消息有多个系统需要对应处理,只需要主业务完成以后,发送一条MQ,其余模块消费MQ消息,即可实现业务,降低模块之间的耦合。
异步:主业务执行结束后从属业务通过MQ,异步执行,减低业务的响应时间,提高用户体验。
削峰:高并发情况下,业务异步处理,提供高峰期业务处理能力,避免系统瘫痪。
解耦、异步、削峰( 系统解耦,异步调用,流量削峰)
系统可用性降低
:系统引入的外部依赖越多,系统要面对的风险越高,拿场景一来说,本来ABCD四个系统配合的好好的,没啥问题,但是你偏要弄个MQ进来插一脚,虽然好处挺多,但是万一MQ挂掉了呢,那样你系统不也就挂掉了。系统复杂程度提高
:非要加个MQ进来,如何保证没有重复消费呢?如何处理消息丢失的情况?怎么保证消息传递的顺序?怎么保证多系统消息一致性问题太多。一致性的问题
:A系统处理完再传递给MQ就直接返回成功了,用户以为你这个请求成功了,但是,如果在BCD的系统里,BC两个系统写库成功,D系统写库失败了怎么办,这样就导致数据不一致了。所以。消息队列其实是一套非常复杂的架构,你在享受MQ带来的好处的同时,也要做各种技术方案把MQ带来的一系列的问题解决掉,等一切都做好之后,系统的复杂程度硬生生提高了一个等级。也许是复杂了好几倍。但是关键时刻,用,还是得用…
特性 | ActiveMQ | RabbitMQ | RocketMQ | kafka |
---|---|---|---|---|
单机吞吐量 | 万级,吞吐量比RocketMQ和Kafka要低了一个数量级 | 万级,吞吐量比RocketMQ和Kafka要低了一个数量级 | 10万级,RocketMQ也是可以支撑高吞吐的一种MQ | 10万级别,这是kafka最大的优点,就是吞吐量高。一般配合大数据类的系统来进行实时数据计算、日志采集等场景 |
topic数量对吞吐量的影响 | topic可以达到几百,几千个的级别,吞吐量会有较小幅度的下降这是RocketMQ的一大优势,在同等机器下,可以支撑大量的topic | topic从几十个到几百个的时候,吞吐量会大幅度下降所以在同等机器下,kafka尽量保证topic数量不要过多。如果要支撑大规模topic,需要增加更多的机器资源 | ||
时效性 | ms级 | 微秒级,这是rabbitmq的一大特点,延迟是最低的 | ms级 | 延迟在ms级以内 |
可用性 | 高,基于主从架构实现高可用性 | 高,基于主从架构实现高可用性 | 非常高,分布式架构 | 非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用 |
消息可靠性 | 有较低的概率丢失数据 | 经过参数优化配置,可以做到0丢失 | 经过参数优化配置,消息可以做到0丢失 | |
功能支持 | MQ领域的功能极其完备 | 基于erlang开发,所以并发能力很强,性能极其好,延时很低 | MQ功能较为完善,还是分布式的,扩展性好 | 功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用,是事实上的标准 |
优劣势总结 | 非常成熟,功能强大,在业内大量的公司以及项目中都有应用偶尔会有较低概率丢失消息而且现在社区以及国内应用都越来越少,官方社区现在对ActiveMQ 5.x维护越来越少几个月才发布一个版本而且确实主要是基于解耦和异步来用的,较少在大规模吞吐的场景中使用 | erlang语言开发,性能极其好,延时很低;吞吐量到万级,MQ功能比较完备而且开源提供的管理界面非常棒,用起来很好用社区相对比较活跃,几乎每个月都发布几个版本分在国内一些互联网公司近几年用rabbitmq也比较多一些但是问题也是显而易见的,RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重。而且erlang开发,国内有几个公司有实力做erlang源码级别的研究和定制?如果说你没这个实力的话,确实偶尔会有一些问题,你很难去看懂源码,你公司对这个东西的掌控很弱,基本职能依赖于开源社区的快速维护和修复bug。而且rabbitmq集群动态扩展会很麻烦,不过这个我觉得还好。其实主要是erlang语言本身带来的问题。很难读源码,很难定制和掌控 | 接口简单易用,而且毕竟在阿里大规模应用过,有阿里品牌保障日处理消息上百亿之多,可以做到大规模吞吐,性能也非常好,分布式扩展也很方便,社区维护还可以,可靠性和可用性都是ok的,还可以支撑大规模的topic数量,支持复杂MQ业务场景而且一个很大的优势在于,阿里出品都是java系的,我们可以自己阅读源码,定制自己公司的MQ,可以掌控社区活跃度相对较为一般,不过也还可以,文档相对来说简单一些,然后接口这块不是按照标准JMS规范走的,有些系统要迁移需要修改大量代码 | kafka的特点其实很明显,就是仅仅提供较少的核心功能,但是提供超高的吞吐量,ms级的延迟,极高的可用性以及可靠性,而且分布式可以任意扩展同时kafka最好是支撑较少的topic数量即可,保证其超高吞吐量而且kafka唯一的一点劣势是有可能消息重复消费,那么对数据准确性会造成极其轻微的影响,在大数据领域中以及日志采集中,这点轻微影响可以忽略这个特性天然适合大数据实时计算以及日志收集 |
综上所述,各种对比之后,个人意见:
一般的业务系统要引入MQ,最早大家都用ActiveMQ,但是现在确实大家用的不多了,没经过大规模吞吐量场景的验证,社区也不是很活跃,所以大家还是算了吧,我个人不推荐用这个了;
后来大家开始用RabbitMQ,但是确实erlang语言阻止了大量的java工程师去深入研究和掌控他,对公司而言,几乎处于不可控的状态,但是确实人是开源的,比较稳定的支持,活跃度也高;
不过现在确实越来越多的公司,会去用RocketMQ,确实很不错,RocketMQ 是阿里巴巴在2012年开源的分布式消息中间件,目前已经捐赠给 Apache 软件基金会,并于2017年9月25日成为 Apache 的顶级项目。作为经历过多次阿里巴巴双十一的洗礼并有稳定出色表现的国产中间件,以其高性能、低延时和高可靠等特性近年来已经也被越来越多的企业使用
所以中小型公司,技术实力较为一般,技术挑战不是特别高,用RabbitMQ是不错的选择,其实RocketMQ也可以(只是有些人担心这个技术万一被抛弃,社区黄掉的风险,虽然目前 RocketMQ 已捐给 Apache,但 主要考虑的是GitHub 上的活跃度其实不算高,但个人觉得黄掉的可能性比较小);大型公司,基础架构研发实力较强,用RocketMQ是很好的选择
如果是大数据领域的实时计算、日志采集等场景,用Kafka是业内标准的,绝对没问题,社区活跃度很高,几乎是该领域的事实性规范
另外角度比较:
下图列出了全球范围内这些MQ在2018.12~2019.12一年时间内,在Google Trends的搜索频率,某种程度可以反映出这些中间件的火爆程度。
从这张图上,我们可以看出来,Kafka是一枝独秀,RabbmitMQ紧接其后,ActiveMQ和Apache Pulsar也有一定的占比。而RocketMQ的搜索量可以说是微乎其微。其实除了RocketMQ的其他几个MQ产品,可以根据这张图初步对比下流行程度。但是对于RocketMQ必须排除在外,因为一些原因,很多国内的用户无法通过Google进行搜索,因此关于RocketMQ的统计实际上是不准确的。
对比RocketMQ与其他MQ有哪些功能特性上的差异。功能特性,主要取决于产品定位,如Kafka定位于高吞吐的流失日志和实时计算场景;ActiveMQ、RabbitMQ等则定位于企业级消息中间件,因此提供了很多企业开发时非常有用的功能,如延迟消息、事务消息、消息重试、消息过滤等,而这些特性Kafka都不具备,但是这类产品的吞吐量要明显的低于Kafka。
RocketMQ则是结合了Kafka和ActiveMQ、RabbitMQ的特性。在性能上,可以与Kafka抗衡;而在企业级MQ的特性上,则具备了很多ActiveMQ、RabbitMQ提供的特性。因此,企业在选择消息中间件选型时,RocketMQ是非常值得考虑的一款产品。
是一个Key-Value的NoSQL数据库,开发维护很活跃,虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。
是使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发。同时实现了一个经纪人(Broker)构架,这意味着消息在发送给客户端时先在中心队列排队。对路由(Routing),负载均衡(Load balance)或者数据持久化都有很好的支持。
refer1
refer2