Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。


Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第1张图片

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第2张图片

1.项目背景

贝叶斯优化器(BayesianOptimization) 是一种黑盒子优化器,用来寻找最优参数。

贝叶斯优化器是基于高斯过程的贝叶斯优化,算法的参数空间中有大量连续型参数,运行时间相对较短。

贝叶斯优化器目标函数的输入必须是具体的超参数,而不能是整个超参数空间,更不能是数据、算法等超参数以外的元素。

本项目使用基于贝叶斯优化器(Bayes_opt)优化卷积神经网络分类算法来解决分类问题。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第3张图片

数据详情如下(部分展示):

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第4张图片

3.数据预处理

3.1用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第5张图片

从上图可以看到,总共有10个字段。

关键代码:

3.2缺失值统计

使用Pandas工具的info()方法统计每个特征缺失情况:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第6张图片

从上图可以看到,数据不存在缺失值,总数据量为2000条。

关键代码:

3.3变量描述性统计分析

通过Pandas工具的describe()方法来来统计变量的平均值、标准差、最大值、最小值、分位数等信息:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第7张图片

关键代码如下:

4.探索性数据分析

4.1y变量分类柱状图

用Pandas工具的value_counts().plot()方法进行统计绘图,图形化展示如下:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第8张图片

从上面图中可以看到,分类为0和1的样本,数量基本一致。

4.2y变量类型为1 x1变量分布直方图

通过Matpltlib工具的hist()方法绘制直方图:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第9张图片

从上图可以看出,x1主要集中在-2到2之间。

4.3 相关性分析

通过Pandas工具的corr()方法和seaborn工具的heatmap()方法绘制相关性热力图:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第10张图片

从图中可以看到,正数为正相关,负数为负相关,绝对值越大相关性越强。

5.特征工程

5.1建立特征数据和标签数据

y为标签数据,除 y之外的为特征数据。关键代码如下:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第11张图片

5.2数据集拆分

数据集集拆分,分为训练集和测试集,80%训练集和20%测试集。关键代码如下:

5.3样本数据增加维度

样本数据训练集和测试集增加维度后的形状:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第12张图片

6.构建贝叶斯优化器优化卷积神经网络分类模型

主要使用基于贝叶斯优化器优化卷积神经网络分类算法,用于目标分类。

6.1构建调优模型

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第13张图片

6.2最优参数展示

寻优的过程信息:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第14张图片

最优参数结果展示:

6.3最优参数构建模型

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第15张图片

训练过程信息:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第16张图片

模型的摘要信息:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第17张图片

模型的网络结构信息:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第18张图片

损失曲线图与准确率曲线图展示:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第19张图片

7.模型评估

7.1评估指标及结果

评估指标主要包括准确率、查准率、召回率、F1分值等等。

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第20张图片

从上表可以看出,F1分值为0.949,说明此模型效果较好。

关键代码如下:

7.2分类报告

卷积神经网络分类模型的分类报告:

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第21张图片

从上图可以看到,分类类型为0的F1分值为0.95;分类类型为1的F1分值为0.95;整个模型的准确率为0.95。

7.3混淆矩阵

Python实现贝叶斯优化器(Bayes_opt)优化卷积神经网络分类模型(CNN分类算法)项目实战_第22张图片

从上图可以看出,实际为0预测不为0的 有5个样本;实际为1预测不为1的有15个样本,整体预测准确率良好。

8.结论与展望

综上所述,本项目采用了基于贝叶斯优化器优化卷积神经网络分类模型,最终证明了我们提出的模型效果良好。


本次机器学习项目实战所需的资料,项目资源如下:

项目说明:

链接:https://pan.baidu.com/s/1c6mQ_1YaDINFEttQymp2UQ

提取码:thgk

你可能感兴趣的:(机器学习,python,python,贝叶斯优化器,卷积神经网络分类模型,Bayes_opt,CNN分类算法)