lv5 嵌入式开发-6 线程的取消和互斥

目录

1 线程通信 – 互斥

2 互斥锁初始化 – pthread_mutex_init

3 互斥锁销毁 pthread_mutex_destroy

4 申请锁 – pthread_mutex_lock

5 释放锁 – pthread_mutex_unlock

6 读写锁

7 死锁的避免

8 条件变量(信号量)

9 线程池概念和实现

9.1 概念

9.2 线程池的实现

9.3 练习

10 线程的GDB调试


掌握:临界资源(了解)、互斥机制(理解)、互斥锁(熟练)

1 线程通信 – 互斥

临界资源  一次只允许一个任务(进程、线程)访问的共享资源

临界区 访问临界资源的代码

互斥机制 mutex互斥锁 任务访问临界资源前申请锁,访问完后释放锁

2 互斥锁初始化 – pthread_mutex_init

两种方法创建互斥锁,静态方式动态方式

动态方式:

#include  
 int  pthread_mutex_init(pthread_mutex_t *mutex,
       const pthread_mutexattr_t *  attr);
  • 成功时返回0,失败时返回错误码  
  • mutex  指向要初始化的互斥锁对象  
  • attr  互斥锁属性,NULL表示缺省属性
  • man 函数出现 No manual entry for pthread_mutex_xxx   -解决办法     apt-get install manpages-posix-dev

静态方式:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

3 互斥锁销毁 pthread_mutex_destroy

int pthread_mutex_destroy(pthread_mutex_t *mutex)

4 申请锁 – pthread_mutex_lock

 #include  
 int  pthread_mutex_lock(pthread_mutex_t *mutex);
 int pthread_mutex_trylock(pthread_mutex_t *mutex)
  • 成功时返回0,失败时返回错误码  
  • mutex  指向要初始化的互斥锁对象  
  • pthread_mutex_lock 如果无法获得锁,任务阻塞
  • pthread_mutex_trylock 如果无法获得锁,返回EBUSY而不是挂起等待

5 释放锁 – pthread_mutex_unlock

 #include  
 int  pthread_mutex_unlock(pthread_mutex_t *mutex);
  • 成功时返回0,失败时返回错误码  
  • mutex  指向要初始化的互斥锁对象  
  • 执行完临界区要及时释放锁

示例:两个线程同时写一个文件的现象。

#include 
#include 
#include 
#include 

FILE *fp;

void *func2(void *arg)
{
	pthread_detach(pthread_self());
	char c;
	int i=0;
	printf("This is func2 thread\n");
	char str[]="I write func2 line";
	while(1)
	{
		while(i

加上互斥锁的示例:

#include 
#include 
#include 
#include 

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;  //初始化
FILE *fp;

void *func2(void *arg)
{
	pthread_detach(pthread_self());
	char c;
	int i=0;
	printf("This is func2 thread\n");
	char str[]="I write func2 line";
	while(1)
	{
		pthread_mutex_lock(&mutex);  //加锁
		while(i

6 读写锁

问:多个线程只是读文件,这时候不会造成文件写坏,加了互斥锁会出现什么问题?

如果加了互斥锁,读文件的效率很低,多个线程读文件是不影响的。

如果一个线程在写,多个线程在读,那么读到一半,文件被改了,那么会出现读错误。

读写锁必要性:提高线程执行效率

特性:

写者:写者使用写锁,如果当前没有读者,也没有其他写者,写者立即获得写锁;否则写者将等待,直到没有读者和写者。

读者:读者使用读锁,如果当前没有写者,读者立即获得读锁;否则读者等待,直到没有写者。

注意:

-同一时刻只有一个线程可以获得写锁,同一时刻可以有多个线程获得读锁。

-读写锁出于写锁状态时,所有试图对读写锁加锁的线程,不管是读者试图加读锁,还是写者试图加写锁,都会被阻塞。

-读写锁处于读锁状态时,有写者试图加写锁时,之后的其他线程的读锁请求会被阻塞,以避免写者长时间的不写锁

初始化一个读写锁   pthread_rwlock_init
读锁定读写锁        pthread_rwlock_rdlock
非阻塞读锁定  pthread_rwlock_tryrdlock
写锁定读写锁      pthread_rwlock_wrlock
非阻塞写锁定      pthread_rwlock_trywrlock
解锁读写锁         pthread_rwlock_unlock
释放读写锁         pthread_rwlock_destroy

 示例:

#include 
#include 
#include 
#include 


pthread_rwlock_t rwlock;

FILE *fp;
void * read_func(void *arg){
    pthread_detach(pthread_self());
    printf("read thread\n");
    char buf[32]={0};
    while(1){
        //rewind(fp);   //从线程开头读
        pthread_rwlock_rdlock(&rwlock);           //如果加了wrlock,那么线程1 读完才轮到线程2读
        while(fgets(buf,32,fp)!=NULL){
            printf("%d,rd=%s\n",(int)arg,buf);
            usleep(1000);
        }
        pthread_rwlock_unlock(&rwlock);
        sleep(1);
    }

}



void *func2(void *arg){
    pthread_detach(pthread_self());
    printf("This func2 thread\n");
    
    char str[]="I write func2 line\n";
    char c;
    int i=0;
    while(1){
        pthread_rwlock_wrlock(&rwlock);
        while(i

2个读线程创建的快一点,如果没读完,写线程是写不进去的。如果先写,同样读也要等待。 

7 死锁的避免

什么是死锁

lv5 嵌入式开发-6 线程的取消和互斥_第1张图片

一把锁是不会出现死锁的。一般两把以上才会出现死锁 

 示例:模式死锁

#include 
#include 
#include 
#include 

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;
FILE *fp;

void *func2(void *arg)
{
	pthread_detach(pthread_self());
	printf("This is func2 thread\n");

	while(1)
	{
		pthread_mutex_lock(&mutex2);
		printf("%d,I got lock2\n",(int)arg);
		sleep(1);
		pthread_mutex_lock(&mutex);
		printf("%d,I got 2 locks\n",(int)arg);
		pthread_mutex_unlock(&mutex);
		pthread_mutex_unlock(&mutex2);
	
		usleep(1);
	}
	pthread_exit("func2 return");
}

void *func(void *arg)
{
	pthread_detach(pthread_self());
	printf("This is func1 thread\n");

	while(1)
	{
		pthread_mutex_lock(&mutex);
		printf("%d,I got lock1\n",(int)arg);
		sleep(1);
		pthread_mutex_lock(&mutex2);
		printf("%d,I got 2 locks\n",(int)arg);
		pthread_mutex_unlock(&mutex2);
		pthread_mutex_unlock(&mutex);
		usleep(1);
	}
	pthread_exit("func1 return");
}

int main(int argc,char * argv[])
{
	pthread_t tid,tid2;
	void *retv;

	fp = fopen("1.txt","a+");
	if(fp == NULL)
	{
		perror("fopen");
		return 0;
	}

	pthread_create(&tid,NULL,func,1);
	pthread_create(&tid2,NULL,func2,2);
	while(1)
	{
		sleep(1);
	}
}


//死锁结果
linux@linux:~/Desktop$ gcc -g -o mutex mutex.c -lpthread
mutex.c: In function ‘main’:
mutex.c:61:2: warning: passing argument 4 of ‘pthread_create’ makes pointer from integer without a cast [enabled by default]
  pthread_create(&tid,NULL,func,1);
  ^
In file included from mutex.c:2:0:
/usr/include/pthread.h:244:12: note: expected ‘void * __restrict__’ but argument is of type ‘int’
 extern int pthread_create (pthread_t *__restrict __newthread,
            ^
mutex.c:62:2: warning: passing argument 4 of ‘pthread_create’ makes pointer from integer without a cast [enabled by default]
  pthread_create(&tid2,NULL,func2,2);
  ^
In file included from mutex.c:2:0:
/usr/include/pthread.h:244:12: note: expected ‘void * __restrict__’ but argument is of type ‘int’
 extern int pthread_create (pthread_t *__restrict __newthread,
            ^
linux@linux:~/Desktop$ ./mutex 
This is func2 thread
2,I got lock2
This is func1 thread
1,I got lock1


。。。

解决方法1:通过时间差让线程1 先执行,获取两把锁后再休息,线程2再执行,获取两把锁后再休息

#include 
#include 
#include 
#include 

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;
FILE *fp;

void *func2(void *arg)
{
	pthread_detach(pthread_self());
	printf("This is func2 thread\n");

	while(1)
	{
		pthread_mutex_lock(&mutex2);
		printf("%d,I got lock2\n",(int)arg);
		sleep(1);
		pthread_mutex_lock(&mutex);
		printf("%d,I got 2 locks\n",(int)arg);
		pthread_mutex_unlock(&mutex);
		pthread_mutex_unlock(&mutex2);
		sleep(5);
	}
	pthread_exit("func2 return");
}

void *func(void *arg)
{
	pthread_detach(pthread_self());
	printf("This is func1 thread\n");

	while(1)
	{
		pthread_mutex_lock(&mutex);
		printf("%d,I got lock1\n",(int)arg);
		sleep(1);
		pthread_mutex_lock(&mutex2);
		printf("%d,I got 2 locks\n",(int)arg);
		pthread_mutex_unlock(&mutex2);
		pthread_mutex_unlock(&mutex);
		sleep(5);
	}
	pthread_exit("func1 return");
}

int main(int argc,char * argv[])
{
	pthread_t tid,tid2;
	void *retv;

	fp = fopen("1.txt","a+");
	if(fp == NULL)
	{
		perror("fopen");
		return 0;
	}

	pthread_create(&tid,NULL,func,1);
	sleep(2);
	pthread_create(&tid2,NULL,func2,2);
	while(1)
	{
		sleep(1);
	}
}

//执行结果
linux@linux:~/Desktop$ ./mutex 
This is func1 thread
1,I got lock1
1,I got 2 locks
This is func2 thread
2,I got lock2
2,I got 2 locks
1,I got lock1
1,I got 2 locks
2,I got lock2
1,I got lock1

解决方法2:调整锁的顺序。都先获取锁1,再去获取锁2,不会同时造成2个资源被锁的情况。

#include 
#include 
#include 
#include 

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;
FILE *fp;

void *func2(void *arg)
{
	pthread_detach(pthread_self());
	printf("This is func2 thread\n");

	while(1)
	{
		pthread_mutex_lock(&mutex);
		printf("%d,I got lock2\n",(int)arg);
		sleep(1);
		pthread_mutex_lock(&mutex2);
		printf("%d,I got 2 locks\n",(int)arg);
		pthread_mutex_unlock(&mutex2);
		pthread_mutex_unlock(&mutex);
		sleep(1);
	}
	pthread_exit("func2 return");
}

void *func(void *arg)
{
	pthread_detach(pthread_self());
	printf("This is func1 thread\n");

	while(1)
	{
		pthread_mutex_lock(&mutex);
		printf("%d,I got lock1\n",(int)arg);
		sleep(1);
		pthread_mutex_lock(&mutex2);
		printf("%d,I got 2 locks\n",(int)arg);
		pthread_mutex_unlock(&mutex2);
		pthread_mutex_unlock(&mutex);
		sleep(1);
	}
	pthread_exit("func1 return");
}

int main(int argc,char * argv[])
{
	pthread_t tid,tid2;
	void *retv;

	fp = fopen("1.txt","a+");
	if(fp == NULL)
	{
		perror("fopen");
		return 0;
	}

	pthread_create(&tid,NULL,func,1);
	pthread_create(&tid2,NULL,func2,2);
	while(1)
	{
		sleep(1);
	}
}

linux@linux:~/Desktop$ ./mutex 
This is func2 thread
2,I got lock2
This is func1 thread
2,I got 2 locks
1,I got lock1
1,I got 2 locks
2,I got lock2
2,I got 2 locks
1,I got lock1
1,I got 2 locks
2,I got lock2
2,I got 2 locks
1,I got lock1
1,I got 2 locks
2,I got lock2

总结:

  1. 锁越少越好,最好使用一把锁
  2. 调整好锁的顺序

 练习:实现多个线程写一个文件,使用互斥锁

#include 
#include 
#include 
#include 

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

void *write_func1(void *arg)
{
	pthread_detach(pthread_self());
	printf("This is write_func1 thread\n");
	while(1)
	{
		pthread_mutex_lock(&mutex);
		printf("%d,I got lock\n",(int)arg);
		pthread_mutex_unlock(&mutex);
		sleep(1);
	}
	pthread_exit("write_func1 return");
}

void *write_func2(void *arg)
{
	pthread_detach(pthread_self());
	printf("This is write_func2 thread\n");

	while(1)
	{
		pthread_mutex_lock(&mutex);
		printf("%d,I got lock\n",(int)arg);
		pthread_mutex_unlock(&mutex);
		sleep(1);
	}
	pthread_exit("write_func2 return");
}


int main(int argc,char * argv[])
{
	pthread_t tid,tid2;
	void *retv;

	pthread_create(&tid,NULL,write_func1,1);
	pthread_create(&tid2,NULL,write_func2,2);
	while(1)
	{
		sleep(1);
	}
}

8 条件变量(信号量)

应用场景:生产者消费者问题,是线程同步的一种手段。

必要性:为了实现等待某个资源,让线程休眠。提高运行效率

pthread_cond_wait(&m_cond,&m_mutex);                //完全阻塞等待

int pthread_cond_timedwait(pthread_cond_t *restrict cond,  //超时等待
           pthread_mutex_t *restrict mutex, 
           const struct timespec *restrict abstime);

int pthread_cond_signal(pthread_cond_t *cond);            //通知1个线程
int pthread_cond_broadcast(pthread_cond_t *cond);         //通知多个线程

使用方法:

静态初始化或使用动态初始化

pthread_cond_t   cond = PTHREAD_COND_INITIALIZER;      //静态初始化条件变量
pthread_mutex_t  mutex = PTHREAD_MUTEX_INITIALIZER;    //初始化互斥量

pthread_cond_t cond;                                   //动态初始化条件变量
pthread_cond_init(&cond);                              //动态初始化条件变量

  生产资源线程:

pthread_mutex_lock(&mutex);

开始产生资源

pthread_cond_sigal(&cond);    //通知一个消费线程

或者
pthread_cond_broadcast(&cond); //广播通知多个消费线程

pthread_mutex_unlock(&mutex);

消费者线程:

pthread_mutex_lock(&mutex);

while (如果没有资源){   //防止惊群效应

pthread_cond_wait(&cond, &mutex); 

}

有资源了,消费资源

pthread_mutex_unlock(&mutex);  

示例:

#include 
#include 
#include 
#include 


pthread_cond_t  hasTaxi=PTHREAD_COND_INITIALIZER;
pthread_mutex_t lock  = PTHREAD_MUTEX_INITIALIZER;


struct taxi{
    struct taxi *next;
    int num;

};

struct taxi *Head=NULL;

void *taxiarv(void *arg){
    printf("taxi arrived thread\n");
    pthread_detach(pthread_self());
    struct taxi *tx;
    int i=1;
    while(1){
        tx = malloc(sizeof(struct taxi));
        tx->num = i++;
        printf("taxi %d comming\n",tx->num);
        pthread_mutex_lock(&lock);
        tx->next = Head;
        Head = tx;
        pthread_cond_signal(&hasTaxi);  //生产了一个资源信号
        //pthread_cond_broadcast(&hasTaxi);  //有可能产生段错误
        pthread_mutex_unlock(&lock);
        sleep(1);
    }
    pthread_exit(0);
}

void *takeTaxi(void *arg){
    printf("take taxi thread\n");
    pthread_detach(pthread_self());
    struct taxi *tx;
    while(1){
        pthread_mutex_lock(&lock);
        while(Head==NULL)  //这句不能去
        {
            pthread_cond_wait(&hasTaxi,&lock);
        }//有资源了可以消费
        tx = Head;
        Head=tx->next;
        printf("%d,Take taxi %d\n",(int)arg,tx->num);
        free(tx);
        pthread_mutex_unlock(&lock);
    }
    pthread_exit(0);
}

int main(){
    pthread_t tid1,tid2,tid3;

    pthread_create(&tid1,NULL,taxiarv,NULL);
//    sleep(5);
    pthread_create(&tid2,NULL,takeTaxi,(void*)1);  //(谁先获得信号谁执行,没有先后规律,并行。
    pthread_create(&tid2,NULL,takeTaxi,(void*)2);
    pthread_create(&tid2,NULL,takeTaxi,(void*)3);

    while(1) {
        sleep(1);

    }


}

注意:

1 pthread_cond_wait(&cond, &mutex)在没有资源等待是是先unlock 休眠,等资源到了,再lock

所以pthread_cond_wait he pthread_mutex_lock 必须配对使用

2  如果pthread_cond_signal或者pthread_cond_broadcast 早于 pthread_cond_wait ,则有可能会丢失信号。(对应代码中 while(Head==NULL)  不能去)

3 pthead_cond_broadcast 信号会被多个线程收到,这叫线程的惊群效应。所以需要加上判断条件while循环。(需要加上while(Head==NULL)  防止同时获取,空指针被获取)

练习:

条件变量有两种初始化的方式,写出这两种方式:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;      //静态初始化条件变量

pthread_cond_t cond;                                        //动态初始化条件变量
pthread_cond_init(&cond, NULL);

9 线程池概念和实现

9.1 概念

概念:

通俗的讲就是一个线程的池子,可以循环的完成任务的一组线程集合

必要性:

我们平时创建一个线程,完成某一个任务,等待线程的退出。但当需要创建大量的线程时,假设T1创建线程时间,T2在线程任务执行时间,T3线程销毁时间 T1+T3 > T2这时候就不划算了,使用线程池可以降低频繁创建和销毁线程所带来的开销,任务处理时间比较短的时候这个好处非常显著

线程池的基本结构:

1 任务队列,存储需要处理的任务,由工作线程来处理这些任务

2 线程池工作线程,它是任务队列任务的消费者,等待新任务的信号

lv5 嵌入式开发-6 线程的取消和互斥_第2张图片

9.2 线程池的实现

创建线程池的基本结构:

任务队列链表  typedef struct Task;

线程池结构体  typedef struct ThreadPool;

线程池的初始化:

pool_init()
{
    创建一个线程池结构
    实现任务队列互斥锁和条件变量的初始化
    创建n个工作线程
}

线程池添加任务

pool_add_task
{
    判断是否有空闲的工作线程
    给任务队列添加一个节点
    给工作线程发送信号newtask
}

实现工作线程

workThread
{
    while(1)
    {
        等待newtask任务信号
        从任务队列中删除节点
        执行任务
    }
}

线程池的销毁

pool_destory
{
    删除任务队列链表所有节点,释放空间
    删除所有的互斥锁条件变量
    删除线程池,释放空间
}

示例:

#include 
#include 
#include 
#include 

#define POOL_NUM 10
typedef struct Task{
    void *(*func)(void *arg);
    void *arg;
    struct Task *next;
}Task;

typedef struct ThreadPool{
    pthread_mutex_t taskLock;
    pthread_cond_t newTask;

    pthread_t tid[POOL_NUM];
    Task *queue_head;
    int busywork;

}ThreadPool;

ThreadPool *pool;

void *workThread(void *arg){
    while(1){
        pthread_mutex_lock(&pool->taskLock);
        pthread_cond_wait(&pool->newTask,&pool->taskLock);

        Task *ptask = pool->queue_head;
        pool->queue_head = pool->queue_head->next;

        pthread_mutex_unlock(&pool->taskLock);

        ptask->func(ptask->arg);
        pool->busywork--;
    }
}

void *realwork(void *arg){
    printf("Finish work %d\n",(int)arg);
}

void pool_add_task(int arg){
    Task *newTask;
    
    pthread_mutex_lock(&pool->taskLock);
    while(pool->busywork>=POOL_NUM){
        pthread_mutex_unlock(&pool->taskLock);  //休眠时候释放锁
        usleep(10000);              //线程池满等待
        pthread_mutex_lock(&pool->taskLock);     //休眠结束再锁,否则别人访问不到资源
    }
    pthread_mutex_unlock(&pool->taskLock);
    

    newTask = malloc(sizeof(Task));
    newTask->func =  realwork;
    newTask->arg = arg;
    

    pthread_mutex_lock(&pool->taskLock);  //操作队列需要加锁
    Task *member = pool->queue_head;
    if(member==NULL){
        pool->queue_head = newTask;
    }else{
       while(member->next!=NULL){          //新任务插入队列尾部
            member=member->next;
       }
       member->next = newTask;

    }
    pool->busywork++;
    pthread_cond_signal(&pool->newTask);

    pthread_mutex_unlock(&pool->taskLock);
}


void pool_init(){
    pool = malloc(sizeof(ThreadPool));
    pthread_mutex_init(&pool->taskLock,NULL);
    pthread_cond_init(&pool->newTask,NULL);
    pool->queue_head = NULL;
    pool->busywork=0;

    for(int i=0;itid[i],NULL,workThread,NULL);
    }
}

void pool_destory(){
    Task *head;
    while(pool->queue_head!=NULL){
        head = pool->queue_head;
        pool->queue_head = pool->queue_head->next;
        free(head);
    }

    pthread_mutex_destroy(&pool->taskLock);
    pthread_cond_destroy(&pool->newTask);
    free(pool);
}

int main(){
   pool_init();
   sleep(20);
   for(int i=1;i<=20;i++){
       pool_add_task(i);

   }

   sleep(5);
   pool_destory();

}

编译错误:

error: ‘ThreadPool {aka struct ThreadPool}’ has no member named ‘head’

意义:ThreadPool 结构体没有head这个成员。

解决:检查是否拼写错误。

error: too few arguments to function ‘pthread_mutex_init’

意思:pthread_mutex_init这个函数参数少了

解决:检查函数的参数,添加对应的参数

运行结果:20个任务共享10个线程池,不让任务丢失。

9.3 练习

实现课程线程池代码

#include 
#include 
#include 

#define POOL_MAX_NUM 10

typedef struct _Task
{
	void *(*func)(void *arg);
	void *arg;
	struct _Task * next;
}Task;

typedef struct _ThreadPool
{
	pthread_mutex_t taskLock;
	pthread_cond_t newTask;

	pthread_t tid[POOL_MAX_NUM];
	Task *queue_head;
	int busywork;
}ThreadPool;

ThreadPool *pool;

void *realwork(void *arg)
{
	printf("Finish work %d\n",(int)arg);
}

void pool_add_task(int arg)
{
	Task *newTask;

	pthread_mutex_lock(&pool->taskLock); 
	while(pool->busywork >= POOL_MAX_NUM)
	{
		pthread_mutex_unlock(&pool->taskLock);
		usleep(10000);
		pthread_mutex_lock(&pool->taskLock);
	}
	pthread_mutex_unlock(&pool->taskLock);

	newTask = malloc(sizeof(Task));
	newTask->func = realwork;
	newTask->arg = &arg;

	pthread_mutex_lock(&pool->taskLock);
	Task * member = pool->queue_head;
	if(member == NULL)
	{
		pool->queue_head = newTask;
	}
	else
	{
		while(member->next != NULL)
		{
			member = member->next;
		}
		member->next = newTask;
	}
	pool->busywork ++;
	pthread_cond_signal(&pool->newTask);
	pthread_mutex_unlock(&pool->taskLock);

}

void *workThread(void *arg)
{
	while(1)
	{
		pthread_mutex_lock(&pool->taskLock);
		//等待newtask任务信号
		pthread_cond_wait(&pool->newTask,&pool->taskLock);

		//从队列中删除一个节点
		Task *ptask = pool->queue_head;
		pool->queue_head = pool->queue_head->next;

		pthread_mutex_unlock(&pool->taskLock);
		//执行任务
		ptask->func(ptask->arg);
		pool->busywork--;

	}
}



void pool_init()
{
	int i;
	pool = malloc(sizeof(ThreadPool));
	pthread_mutex_init(&pool->taskLock,NULL);
	pthread_cond_init(&pool->newTask,NULL);
	pool->queue_head = NULL;
	pool->busywork = 0;

	for(i = 0; i < POOL_MAX_NUM; i++)
	{
		pthread_create(&pool->tid[i],NULL,workThread,NULL);
	}
}

void pool_destory(){
	Task *head;
	while(pool->queue_head!=NULL){
		head = pool->queue_head;
		pool->queue_head = pool->queue_head->next;
		free(head);
	}

	pthread_mutex_destroy(&pool->taskLock);
	pthread_cond_destroy(&pool->newTask);
	free(pool);
}

int main(int argc,char *argv[])
{
	int i;
	pool_init();
	sleep(5);
	for(i = 1; i <= 30; i++)
	{
		pool_add_task(i);
	}
	sleep(5);
	pool_destory();

}

10 线程的GDB调试

显示线程

info thread

切换线程

thread xxx
b 6 thread 3  //线程运行后给线程3第6行打端点
bt  //可以打印出当前线程的函数调用栈信息。它会显示函数调用链的序列,从当前执行点一直追溯到代码的起始点,以帮助开发人员定位问题所在

GDB为特定线程设置断点

break location thread id

GDB设置线程锁

set scheduler-locking on/off  //on:其他线程会暂停。可以单独调试一个线程

#include 
#include 

void *testThread(void *arg){
    char *threadName = (char*)arg;
    printf("Current running %s\n",threadName);

    printf("aaaaaaaa\n");
    printf("bbbbbbbb\n");

    pthread_exit(0);

}


int main(){
    pthread_t tid1,tid2;

    pthread_create(&tid1,NULL,testThread,"thread1");
    pthread_create(&tid2,NULL,testThread,"thread2");

    pthread_join(tid1,NULL);
    pthread_join(tid2,NULL);


}

你可能感兴趣的:(嵌入式开发,linux)