(十七)SpringCloud学习笔记之微服务的链路追踪概述

微服务的链路追踪概述

  • 1 微服务架构下的问题
  • 2 Sleuth概述
    • 2.1 简介
    • 2.2 相关概念
    • 2.3 链路追踪Sleuth入门
  • 3 Zipkin的概述
    • 3.1 Zipkin简介
    • 3.2 Zipkin Server的部署和配置
    • 3.3 客户端Zipkin+Sleuth整合
  • 4 基于消息中间件收集数据
    • 4.1 RabbitMQ的安装与启动
    • 4.2 服务端启动
    • 4.3 客户端配置
  • 5 基于MySQL存储跟踪数据
    • 5.1 准备数据库
    • 5.2 配置启动服务端

1 微服务架构下的问题

在大型系统的微服务化构建中,一个系统会被拆分成许多模块。这些模块负责不同的功能,组合成系统,最终可以提供丰富的功能。在这种架构中,一次请求往往需要涉及到多个服务。互联网应用构建在不同的软件模块集上,这些软件模块,有可能是由不同的团队开发、可能使用不同的编程语言来实现、有可能布在了几千台服务器,横跨多个不同的数据中心,也就意味着这种架构形式也会存在一些问题:

  • 如何快速发现问题?
  • 如何判断故障影响范围?
  • 如何梳理服务依赖以及依赖的合理性?
  • 如何分析链路性能问题以及实时容量规划?

分布式链路追踪(Distributed Tracing),就是将一次分布式请求还原成调用链路,进行日志记录,性能监控并将 一次分布式请求的调用情况集中展示。比如各个服务节点上的耗时、请求具体到达哪台机器上、每个服务节点的请求状态等等。

目前业界比较流行的链路追踪系统如:Twitter的Zipkin,阿里的鹰眼,美团的Mtrace,大众点评的cat等,大部分都是基于google发表的Dapper。Dapper阐述了分布式系统,特别是微服务架构中链路追踪的概念、数据表示、埋点、传递、收集、存储与展示等技术细节。

2 Sleuth概述

2.1 简介

Spring Cloud Sleuth 主要功能就是在分布式系统中提供追踪解决方案,并且兼容支持了 zipkin,你只需要在pom文件中引入相应的依赖即可。

2.2 相关概念

Spring Cloud Sleuth 为Spring Cloud提供了分布式根据的解决方案。它大量借用了Google Dapper的设计。先来了解一下Sleuth中的术语和相关概念。
Spring Cloud Sleuth采用的是Google的开源项目Dapper的专业术语。

  • Span:基本工作单元,例如,在一个新建的span中发送一个RPC等同于发送一个回应请求给RPC,span通过一个64位ID唯一标识,trace以另一个64位ID表示,span还有其他数据信息,比如摘要、时间戳事件、关键值注释(tags)、span的ID、以及进度ID(通常是IP地址) span在不断的启动和停止,同时记录了时间信息,当你创建了一个span,你必须在未来的某个时刻停止它。
  • Trace:一系列spans组成的一个树状结构,例如,如果你正在跑一个分布式大数据工程,你可能需要创建一个trace。
  • Annotation:用来及时记录一个事件的存在,一些核心annotations用来定义一个请求的开始和结束
    cs - Client Sent -客户端发起一个请求,这个annotion描述了这个span的开始
    sr - Server Received -服务端获得请求并准备开始处理它,如果将其sr减去cs时间戳便可得到网络延迟
    ss - Server Sent -注解表明请求处理的完成(当请求返回客户端),如果ss减去sr时间戳便可得到服务端需要的处理请求时间
    cr - Client Received -表明span的结束,客户端成功接收到服务端的回复,如果cr减去cs时间戳便可得到客户端从服务端获取回复的所有所需时间

2.3 链路追踪Sleuth入门

(1) 配置依赖
修改微服务工程引入Sleuth依赖

<dependency>
    <groupId>org.springframework.cloudgroupId>
    <artifactId>spring-cloud-starter-sleuthartifactId>
dependency>

(2) 修改配置文件
修改application.yml添加日志级别

logging:
  level:
    root: info
    org.springframework.web.servlet.DispatcherServlet: DEBUG
    org.springframework.cloud.sleuth: DEBUG

每个微服务都需要添加如上的配置。启动微服务,调用之后,我们可以在控制台观察到sleuth的日志输出。
在这里插入图片描述
其中 ff8ff8b803a3b558 是TraceId,后面跟着的是SpanId,依次调用有一个全局的TraceId,将调用链路串起来。仔细分析每个微服务的日志,不难看出请求的具体过程。

查看日志文件并不是一个很好的方法,当微服务越来越多日志文件也会越来越多,通过Zipkin可以将日志聚合,并进行可视化展示和全文检索。

3 Zipkin的概述

3.1 Zipkin简介

Zipkin 是 Twitter 的一个开源项目,它基于 Google Dapper 实现,它致力于收集服务的定时数据,以解决微服务架构中的延迟问题,包括数据的收集、存储、查找和展现。 我们可以使用它来收集各个服务器上请求链路的跟踪数据,并通过它提供的 REST API 接口来辅助我们查询跟踪数据以实现对分布式系统的监控程序,从而及时地发现系统中出现的延迟升高问题并找出系统性能瓶颈的根源。除了面向开发
的 API 接口之外,它也提供了方便的 UI 组件来帮助我们直观的搜索跟踪信息和分析请求链路明细,比如:可以查询某段时间内各用户请求的处理时间等。 Zipkin 提供了可插拔数据存储方式:InMemory、MySql、Cassandra 以及 Elasticsearch。
(十七)SpringCloud学习笔记之微服务的链路追踪概述_第1张图片
上图展示了 Zipkin 的基础架构,它主要由 4 个核心组件构成:

  • Collector:收集器组件,它主要用于处理从外部系统发送过来的跟踪信息,将这些信息转换为Zipkin 内部处理的 Span 格式,以支持后续的存储、分析、展示等功能。
  • Storage:存储组件,它主要对处理收集器接收到的跟踪信息,默认会将这些信息存储在内存中,我们也可以修改此存储策略,通过使用其他存储组件将跟踪信息存储到数据库中。
  • RESTful API:API 组件,它主要用来提供外部访问接口。比如给客户端展示跟踪信息,或是外接系统访问以实现监控等。
  • Web UI:UI 组件,基于 API 组件实现的上层应用。通过 UI 组件用户可以方便而有直观地查询和分析跟踪信息。

Zipkin 分为两端,一个是 Zipkin 服务端,一个是 Zipkin 客户端,客户端也就是微服务的应用。客户端会配置服务端的 URL 地址,一旦发生服务间的调用的时候,会被配置在微服务里面的 Sleuth 的监听器监听,并生成相应的 Trace 和 Span 信息发送给服务端。
发送的方式主要有两种,一种是 HTTP 报文的方式,还有一种是消息总线的方式如 RabbitMQ。
不论哪种方式,我们都需要:

  • 一个 Eureka 服务注册中心,这里我们就用之前的 eureka 项目来当注册中心。
  • 一个 Zipkin 服务端。
  • 多个微服务,这些微服务中配置Zipkin 客户端。

3.2 Zipkin Server的部署和配置

(1) Zipkin Server下载
从spring boot 2.0开始,官方就不再支持使用自建Zipkin Server的方式进行服务链路追踪,而是直接提供了编译好的 jar 包来给我们使用。可以从官方网站下载先下载Zipkin的web UI,我们这里下载的是zipkin-server-2.12.9-exec.jar
(2) 启动
在命令行输入 java -jar zipkin-server-2.12.9-exec.jar 启动 Zipkin Server
(十七)SpringCloud学习笔记之微服务的链路追踪概述_第2张图片

  • 默认Zipkin Server的请求端口为 9411
  • Zipkin Server的启动参数可以通过官方提供的yml配置文件查找
  • 在浏览器输入 http://127.0.0.1:9411即可进入到Zipkin Server的管理后台

3.3 客户端Zipkin+Sleuth整合

(1)客户端添加依赖
客户端指的是需要被追踪的微服务

<dependency>
    <groupId>org.springframework.cloudgroupId>
    <artifactId>spring-cloud-starter-zipkin

你可能感兴趣的:(SpringCloud,分布式,微服务,SpringCloud)