谈谈 Redis 过期删除策略

谈谈 Redis 过期删除策略

如何判断 key 是否过期?

每当我们对一个 key 设置了过期时间时,Redis 会把该 key 带上过期时间存储到一个过期字典(expires dict)中,也就是说「过期字典」保存了数据库中所有 key 的过期时间。
字典实际上是哈希表,哈希表的最大好处就是让我们可以用 O(1) 的时间复杂度来快速查找。当我们查询一个 key 时,Redis 首先检查该 key 是否存在于过期字典中:
● 如果不在,则正常读取键值;
● 如果存在,则会获取该 key 的过期时间,然后与当前系统时间进行比对,如果比系统时间大,那就没有过期,否则判定该 key 已过期。

过期策略有哪些?

在说 Redis 过期删除策略之前,先跟大家介绍下,常见的三种过期删除策略:
● 定时删除;
● 惰性删除;
● 定期删除;
接下来,分别分析它们的优缺点。

定时删除策略是怎么样的?

定时删除策略的做法是,在设置 key 的过期时间时,同时创建一个定时事件,当时间到达时,由事件处理器自动执行 key 的删除操作。
定时删除策略的优点:
● 可以保证过期 key 会被尽快删除,也就是内存可以被尽快地释放。因此,定时删除对内存是最友好的。
定时删除策略的缺点:
● 在过期 key 比较多的情况下,删除过期 key 可能会占用相当一部分 CPU 时间,在内存不紧张但 CPU 时间紧张的情况下,将 CPU 时间用于删除和当前任务无关的过期键上,无疑会对服务器的响应时间和吞吐量造成影响。所以,定时删除策略对 CPU 不友好。

惰性删除策略是怎么样的?

惰性删除策略的做法是,不主动删除过期键,每次从数据库访问 key 时,都检测 key 是否过期,如果过期则删除该 key。
惰性删除策略的优点:
● 因为每次访问时,才会检查 key 是否过期,所以此策略只会使用很少的系统资源,因此,惰性删除策略对 CPU 时间最友好。
惰性删除策略的缺点:
● 如果一个 key 已经过期,而这个 key 又仍然保留在数据库中,那么只要这个过期 key 一直没有被访问,它所占用的内存就不会释放,造成了一定的内存空间浪费。所以,惰性删除策略对内存不友好。

定期删除策略是怎么样的?

定期删除策略的做法是,每隔一段时间「随机」从数据库中取出一定数量的 key 进行检查,并删除其中的过期key。
定期删除策略的优点:
● 通过限制删除操作执行的时长和频率,来减少删除操作对 CPU 的影响,同时也能删除一部分过期的数据减少了过期键对空间的无效占用。
定期删除策略的缺点:
● 内存清理方面没有定时删除效果好,同时没有惰性删除使用的系统资源少。
● 难以确定删除操作执行的时长和频率。如果执行的太频繁,定期删除策略变得和定时删除策略一样,对CPU不友好;如果执行的太少,那又和惰性删除一样了,过期 key 占用的内存不会及时得到释放。

Redis 的过期策略是什么?

Redis 选择「惰性删除+定期删除」这两种策略配和使用,以求在合理使用 CPU 时间和避免内存浪费之间取得平衡。

惰性删除:

Redis 在访问或者修改 key 之前,都会调用 expireIfNeeded 函数对其进行检查,检查 key 是否过期:
● 如果过期,则删除该 key,至于选择异步删除,还是选择同步删除,根据 lazyfree_lazy_expire 参数配置决定(Redis 4.0版本开始提供参数),然后返回 null 客户端;
● 如果没有过期,不做任何处理,然后返回正常的键值对给客户端;

定期删除:

在 Redis 中,默认每秒进行 10 次过期检查一次数据库,此配置可通过 Redis 的配置文件 redis.conf 进行配置,配置键为 hz 它的默认值是 hz 10。
特别强调下,每次检查数据库并不是遍历过期字典中的所有 key,而是从过期字典中随机抽取一定数量的 key 进行过期检查。
也就是说,数据库每轮抽查时,会随机选择 20 个 key 判断是否过期。
接下来,详细说说 Redis 的定期删除的流程:
undefined 从过期字典中随机抽取 20 个 key;
undefined 检查这 20 个 key 是否过期,并删除已过期的 key;
undefined 如果本轮检查的已过期 key 的数量,超过 5 个(20/4),也就是「已过期 key 的数量」占比「随机抽取 key 的数量」大于 25%,则继续重复步骤 1;如果已过期的 key 比例小于 25%,则停止继续删除过期 key,然后等待下一轮再检查。
可以看到,定期删除是一个循环的流程。
那 Redis 为了保证定期删除不会出现循环过度,导致线程卡死现象,为此增加了定期删除循环流程的时间上限,默认不会超过 25ms。

你可能感兴趣的:(Redis,数据库,缓存,redis,Redis)