思路
- 通过中间点修正矩阵
场景
- 所有顶点至所有顶点的最短路径问题
案例
代码
package com.map;
import lombok.Data;
import java.util.Arrays;
/**
* ShortestPath_FLOYD class
*/
@Data
public class ShortestPath_FLOYD {
private int[][] P; // 路径下标
private int[][] D; // 带权长度
public final static int MAX = Integer.MAX_VALUE / 2;
public void FLOYD(int map[][]) {
int num = map.length;
P = new int[num][num];
D = new int[num][num];
for(int v = 0; v < num; v ++) {
for(int w = 0; w < num; w ++) {
D[v][w] = map[v][w];
P[v][w] = w;
}
}
for(int k = 0; k < num; k ++) {
for(int v = 0; v < num; v ++) {
for(int w = 0; w < num; w ++) {
if(D[v][w] > D[v][k] + D[k][w]) {
D[v][w] = D[v][k] + D[k][w];
P[v][w] = P[v][k];
}
}
}
}
}
public static void main(String[] args) {
// 模式测试数据
int[][] data = new int[16][3];
data[0][0] = 0; data[0][1] = 1; data[0][2] = 1;
data[1][0] = 0; data[1][1] = 2; data[1][2] = 5;
data[2][0] = 1; data[2][1] = 2; data[2][2] = 3;
data[3][0] = 1; data[3][1] = 4; data[3][2] = 5;
data[4][0] = 1; data[4][1] = 3; data[4][2] = 7;
data[5][0] = 2; data[5][1] = 5; data[5][2] = 7;
data[12][0] = 2; data[12][1] = 4; data[12][2] = 1;
data[6][0] = 3; data[6][1] = 4; data[6][2] = 2;
data[7][0] = 4; data[7][1] = 5; data[7][2] = 3;
data[8][0] = 3; data[8][1] = 6; data[8][2] = 3;
data[9][0] = 4; data[9][1] = 6; data[9][2] = 6;
data[10][0] = 4; data[10][1] = 7; data[10][2] = 9;
data[13][0] = 5; data[13][1] = 7; data[13][2] = 5;
data[11][0] = 6; data[11][1] = 7; data[11][2] = 2;
data[14][0] = 6; data[14][1] = 8; data[14][2] = 7;
data[15][0] = 7; data[15][1] = 8; data[15][2] = 4;
// 初始化邻接矩阵
int[][] map = new int[9][9];
int num = map.length;
for(int i = 0; i < num ; i ++) {
for (int j = 0; j
控制台输出
邻接矩阵:
[0, 1, 5, 1073741823, 1073741823, 1073741823, 1073741823, 1073741823, 1073741823]
[1, 0, 3, 7, 5, 1073741823, 1073741823, 1073741823, 1073741823]
[5, 3, 0, 1073741823, 1, 7, 1073741823, 1073741823, 1073741823]
[1073741823, 7, 1073741823, 0, 2, 1073741823, 3, 1073741823, 1073741823]
[1073741823, 5, 1, 2, 0, 3, 6, 9, 1073741823]
[1073741823, 1073741823, 7, 1073741823, 3, 0, 1073741823, 5, 1073741823]
[1073741823, 1073741823, 1073741823, 3, 6, 1073741823, 0, 2, 7]
[1073741823, 1073741823, 1073741823, 1073741823, 9, 5, 2, 0, 4]
[1073741823, 1073741823, 1073741823, 1073741823, 1073741823, 1073741823, 7, 4, 0]
最短路径权值数组:
[0, 1, 4, 7, 5, 8, 10, 12, 16]
[1, 0, 3, 6, 4, 7, 9, 11, 15]
[4, 3, 0, 3, 1, 4, 6, 8, 12]
[7, 6, 3, 0, 2, 5, 3, 5, 9]
[5, 4, 1, 2, 0, 3, 5, 7, 11]
[8, 7, 4, 5, 3, 0, 7, 5, 9]
[10, 9, 6, 3, 5, 7, 0, 2, 6]
[12, 11, 8, 5, 7, 5, 2, 0, 4]
[16, 15, 12, 9, 11, 9, 6, 4, 0]
前驱节点数组:
[0, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 1, 2, 2, 2, 2, 2, 2, 2]
[1, 1, 2, 4, 4, 4, 4, 4, 4]
[4, 4, 4, 3, 4, 4, 6, 6, 6]
[2, 2, 2, 3, 4, 5, 3, 3, 3]
[4, 4, 4, 4, 4, 5, 7, 7, 7]
[3, 3, 3, 3, 3, 7, 6, 7, 7]
[6, 6, 6, 6, 6, 5, 6, 7, 8]
[7, 7, 7, 7, 7, 7, 7, 7, 8]
Process finished with exit code 0
如何通过P 得到具体的最短路径
v0->v8 为例
P[v0][v8] = 1 路径为:v0->v1
P[v1][v8] = 2 路径为:v0-v1->v2
....
v0->v1->v2->v4->v3->v6->v7->v8
时间复杂度
-O(n3)