- 从零开始学机器学习——构建一个推荐web应用
努力的小雨
机器学习机器学习前端人工智能
首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns今天,我们终于将分类器这一章节学习完活了,和回归一样,最后一章节用来构建web应用程序,我们会回顾之前所学的知识点,并新增一个web应用用来让模型和用户交互。所以今天的主题是美食推荐。美食推荐Web应用程序首先,请不要担心,本章节并不会涉及过多的前端知识点。我们此次的学习重点在于机器学习本身,因此我们
- 【2025年春季】全国CTF夺旗赛-从零基础入门到竞赛,看这一篇就稳了!
白帽子凯哥
web安全学习安全CTF夺旗赛网络安全
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包目录一、CTF简介二、CTF竞赛模式三、CTF各大题型简介四、CTF学习路线4.1、初期1、html+css+js(2-3天)2、apache+php(4-5天)3、mysql(2-3天)4、python(2-3天)5、burpsuite(1-2天)4.2、中期1、SQL注入(7-8天)2、文件上传(7-8天)3、其他漏洞(14-15
- 【前端入门】应该了解和知道的几个国内外前端开发资源网站
爱上大树的小猪
前端
与大家分享一下几个国内外前端开发资源网站国际资源MDNWebDocs(MozillaDeveloperNetwork)用途:MDN是Web技术领域最全面的文档库之一,涵盖了HTML、CSS、JavaScript以及浏览器API等。链接:https://developer.mozilla.orgW3Schools用途:适合初学者学习Web技术,提供从基础到进阶的教程,同时还有在线练习环境。链接:ht
- [官文翻译]Flutter状态管理库Riverpod - 所有的Provider - StateProvider
2401_84166236
2024年程序员学习flutter
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!因此收集整理了一份《2024年最新HarmonyOS鸿蒙全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提
- Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》Python自动化炒股:利用XGBoost和LightGBM进行股票市场预测的实战案例在当今快节奏的金融市场中,自动化交易和预测模型成为了投资者和交易者的重要工具。Python以其强大的数据处理能力和丰富的机器学习库,成为了实现这些模型的首选语言。本文将带你了解如何使用XGBoost和LightGBM这两个流行的机器学习算法来
- AI大模型学习路线:从入门到精通的完整指南【2025最新】
AI大模型-大飞
人工智能学习大模型LLMAI程序员大模型学习
引言近年来,以GPT、BERT、LLaMA等为代表的AI大模型彻底改变了人工智能领域的技术格局。它们不仅在自然语言处理(NLP)任务中表现卓越,还在计算机视觉、多模态交互等领域展现出巨大潜力。本文旨在为开发者、研究者和技术爱好者提供一条清晰的学习路径,帮助读者逐步掌握大模型的核心技术并实现实际应用。一、基础阶段:构建知识体系数学与理论基础线性代数:矩阵运算、特征值与奇异值分解是大模型参数优化的基础
- 【sklearn 04】DNN、CNN、RNN
@金色海岸
sklearndnncnn
DNNDNN(DeepNeuralNetworks,深度神经网络)是一种相对浅层机器学习模型具有更多参数,需要更多数据进行训练的机器学习算法CNNCNN(convolutionalNeuralNetworks,卷积神经网络)是一种从局部特征开始学习并逐渐整合的神经网络。卷积神经网络通过卷积层来进行特征提取,通过池化层进行降维,相比较全连接的神经网络,卷积神经网络降低了模型复杂度,减少了模型的参数,
- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- 2025-03-15 学习记录--C/C++-PTA 练习3-4 统计字符
小呀小萝卜儿
学习-C/C++学习c语言
合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下。一、题目描述⭐️练习3-4统计字符本题要求编写程序,输入10个字符,统计其中英文字母、空格或回车、数字字符和其他字符的个数。输入格式:输入为10个字符。最后一个回车表示输入结束,不算在内。输出格式:在一行内按照letter=英文字母个数,blank=空格或回车个数,digit=数字字符个数,other=其他字符个数的格式输出。输入样例:a
- 2025-03-13 学习记录--C/C++-PTA 练习2-9 整数四则运算
小呀小萝卜儿
学习-C/C++学习c语言
合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下。一、题目描述⭐️练习2-9整数四则运算本题要求编写程序,计算2个正整数的和、差、积、商并输出。题目保证输入和输出全部在整型范围内。输入格式:输入在一行中给出2个正整数A和B。输出格式:在4行中按照格式“A运算符B=结果”顺序输出和、差、积、商。输入样例:32输出样例:3+2=53-2=13*2=63/2=1二、代码(C语言)⭐️#incl
- 跨域视线估计的协同对比学习(重点针对局部对比学习解释)
阳光明媚大男孩
学习人工智能
跨域视线估计的协同对比学习1.问题表述在视线估计领域中,跨域问题是指当训练数据和测试数据来自不同的领域(如不同的个体、光照条件、拍摄设备等)时,模型性能会显著下降。这种性能下降主要是因为不同领域之间的差异导致模型难以泛化。为了解决这一问题,新方法(CrossGazeGeneralization,CGaG)旨在通过特征解耦的方式减少领域差异对视线估计的影响,从而提高模型在跨域情况下的准确性和稳定性。
- c++与c语言的区别是什么?
pythoncainiao221
c++c语言开发语言
1、类型不同C语言是面向过程的,而C++是面向对象的。2、函数库不同C语言的标准的函数库很松散,而C++对于大多数的函数都是集成的很紧密。3、结构不同C语言中结构只有成员变量,而在C++中结构中,可以有成员变量和成员函数。它们的区别是c++是在C语言基础上发展起来的,根据开发过程中遇到的需求,它引入了很多新的特性。如果你不走C/C++方向,直接学习Java就可以了,相同的待遇下,选择简单的更好。当
- 从LLM出发:由浅入深探索AI开发的全流程与简单实践(全文3w字)
码事漫谈
AI人工智能
文章目录第一部分:AI开发的背景与历史1.1人工智能的起源与发展1.2神经网络与深度学习的崛起1.3Transformer架构与LLM的兴起1.4当前AI开发的现状与趋势第二部分:AI开发的核心技术2.1机器学习:AI的基础2.1.1机器学习的类型2.1.2机器学习的流程2.2深度学习:机器学习的进阶2.2.1神经网络基础2.2.2深度学习的关键架构2.3Transformer架构:现代LLM的核
- 漫画算法python篇pdf_用Python抓取漫画并制作mobi格式电子书
jian bao
漫画算法python篇pdf
想看某一部漫画,但是用手机看感觉屏幕太小,用电脑看吧有太不方面。正好有一部Kindle,决定写一个爬虫把漫画爬取下来,然后制作成mobi格式的电子书放到kindle里面看。本人对于Python学习创建了一个小小的学习圈子,为各位提供了一个平台,大家一起来讨论学习Python。欢迎各位到来Python学习群:943752371一起讨论视频分享学习。Python是未来的发展方向,正在挑战我们的分析能力
- Spring Boot 脚手架搭建:新姿势
墨瑾轩
一起学学Java【一】springboot后端java
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣刨根问底:脚手架是什么?嘿,小伙伴们!今天咱们要聊的是如何搭建一个既漂亮又实用的SpringBoot脚手架。脚手架就像是盖房子时搭起的架子,它能帮助我们快速构建出项目的骨架,让我们可以更专注于业务逻辑的实现。那么,如何搭建这样一个脚手架呢?别急,咱们一步一
- 纳米尺度仿真软件:Quantum Espresso_(20).机器学习在QuantumEspresso中的应用
kkchenjj
分子动力学2机器学习人工智能模拟仿真仿真模拟分子动力学
机器学习在QuantumEspresso中的应用在现代材料科学和纳米技术的研究中,机器学习(ML)技术已经成为一种强大的工具,用于加速和优化量子力学计算。QuantumEspresso是一个广泛使用的开源软件包,用于进行第一性原理计算,特别是在纳米尺度材料的模拟中。本节将介绍如何将机器学习技术应用于QuantumEspresso,以提高计算效率、预测材料性质和优化结构。1.机器学习与第一性原理计算
- 深入探索Ajax技术与应用实践
Javen Fang
本文还有配套的精品资源,点击获取简介:Ajax技术允许在不刷新整个页面的情况下进行网页内容的局部更新,大大提升了用户体验。文章详细解析了Ajax的核心组件和工作流程,并强调了其在Web开发中的重要性。此外,还探讨了Ajax的优点、应用场景以及在实际开发中需要注意的问题。通过学习Ajax,开发者可以设计出更加动态和高效的网页应用。1.Ajax技术概述和定义Ajax技术概述Ajax技术的核心在于其异步
- java实现卷积神经网络CNN(附带源码)
Katie。
Java实战项目java
Java实现卷积神经网络(CNN)项目详解目录项目概述1.1项目背景与意义1.2什么是卷积神经网络(CNN)1.3卷积神经网络的应用场景相关知识与理论基础2.1神经网络与深度学习概述2.2卷积操作与卷积层原理2.3激活函数与池化层2.4全连接层与损失函数2.5前向传播、反向传播与梯度下降项目需求与分析3.1项目目标3.2功能需求分析3.3性能与扩展性要求3.4异常处理与鲁棒性考虑系统设计与实现思路
- 推荐开源项目:Free Templates for AWS CloudFormation
褚知茉Jade
推荐开源项目:FreeTemplatesforAWSCloudFormationaws-cf-templateswiddix/aws-cf-templates:是一个包含各种AWSCloudFormation模板的存储库。适合查找和学习AWSCloudFormation模板的示例,以及用于构建自己的基础设施。特点是包含了许多AWS服务和功能的模板示例,可以快速地了解如何使用CloudFormati
- 探索AWS CloudFormation样本模板:构建云环境的新起点
劳泉文Luna
探索AWSCloudFormation样本模板:构建云环境的新起点aws-cloudformation-templatesawslabs/aws-cloudformation-templates:是一个包含各种AWSCloudFormation模板的存储库。适合查找和学习AWSCloudFormation模板的示例,以及用于构建自己的基础设施。特点是包含了许多AWS服务和功能的模板示例,可以快速地
- 批量安装 Python 库的脚本:提高python学习效率的第一步(附源码)
TAGRENLA
Interestingpythonprojectpython学习开发语言
批量安装Python库批量安装Python库的脚本:提高数据分析效率的一步(附源码)批量安装脚本前提条件使用pip:Python包管理工具批量安装脚本查看当前python解释器中安装的所有的库批量安装Python库的脚本:提高数据分析效率的一步(附源码)在现代数据分析领域,Python已成为一个不可或缺的工具。为了进行数据处理、分析、可视化和建模等任务,Python社区涌现出了众多强大的库和工具。
- K8S学习之基础二十八:k8s中的configMap
云上艺旅
K8S学习kubernetes学习容器云原生
k8s中的configMapconfigMap是k8s的资源对象,简称cm,用于保存非机密性的配置,数据可以用key/value键值对形式保存,也可以通过文件形式保存在部署服务的时候,每个服务都有自己的配置文件,如果一台服务器上部署多个服务:nginx、tomcat、apache等,那么这些配置都存在这个节点上,假如一台服务器不能满足线上高并发的要求,需要对服务器扩容,扩容之后的服务器还是需要部署
- kubernetes(K8S)学习(七):K8S之系统核心组件
꯭ 瞎꯭扯꯭蛋꯭
Kuberneteskubernetes学习容器
K8S之系统核心组件K8s系统核心组件1.1Master和Node1.2kubeadm1.3先把核心组件总体过一遍1.4Kubernetes源码查看方式1.5kubectl1.6APIServer1.7集群安全机制之APIServer1.8Scheduler1.9kubelet1.10kube-proxyK8s系统核心组件1.1Master和Node官网:https://kubernetes.io
- Python编码系列—Python代码重构:提升代码质量
学步_技术
Python编码python重构开发语言
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- lua C语言api学习3 lua中调用C语言函数
刘阿去
lualuac语言学习
本文介绍如何在lua中如何调用自定义C语言函数1C函数要求Lua可以调用C语言函数,但这并不意味着Lua可以调用所有的C函数。当Lua调用C函数时,这个C函数必须遵循某种规则来获取参数和返回结果。此外,当Lua调用C函数时,我们必须注册该函数,即必须以一种恰当的方式为Lua提供该C函数的地址。所有在lua中注册的函数必须遵循下面原型。typedefint(*lua_CFunction)(lua_S
- Dubbo、SpringCloud框架学习
种豆走天下
dubbospringcloud学习
学习Dubbo和SpringCloud框架是微服务架构的一个重要部分。这两个框架在分布式系统中起着重要的作用,分别是阿里巴巴和Spring团队开发的。下面我将为你提供一些基础知识和学习路线,帮助你更好地理解和掌握这两个框架。1.Dubbo框架学习1.1什么是DubboDubbo是阿里巴巴开源的一款高性能的微服务框架。它提供了RPC(远程过程调用)、服务注册与发现、负载均衡、容错、监控等功能。Dub
- python 使用microsoft-Florence-2-base进行图片描述生成
哦里 哦里哦里给
AI大语言模型实战pythonmicrosoft开发语言
目录一、Florence-2简介二、代码实践三、多语言模型一、Florence-2简介Florence-2是一个先进的视觉基础模型,采用基于提示(prompt)的方式,处理广泛的视觉和视觉-语言任务。Florence-2能够解析简单的文本提示,执行如图像描述、物体检测和分割等任务。该模型利用FLD-5B数据集,该数据集包含54亿个注释,涵盖1.26亿张图像,用于掌握多任务学习。模型的序列到序列架构
- 从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(2)消息队列与消息中间件
shiter
人工智能系统解决方案与技术架构人工智能深度学习音视频
文章大纲原始视频队列Python内存视频缓存优化方案(4GB以内)一、核心参数设计二、内存管理实现三、性能优化策略四、内存占用验证五、高级优化技巧六、部署建议检测结果队列YOLO检测结果队列技术方案一、技术选型矩阵二、核心实现代码三、性能优化策略四、可视化方案对比五、部署建议逻辑判定队列时间片图论时间序列大模型引入参考文献原始视频队列想要在单机内存中缓存1-5分钟的视频片段,python技术栈的话
- LuaJIT 学习(4)—— FFI 语义
alenliu0621
LuaLuaLuaJIT
文章目录CLanguageSupportCTypeConversionRulesConversionsfromCtypestoLuaobjects例子:访问结构体成员ConversionsfromLuaobjectstoCtypesConversionsbetweenCtypes例子:修改结构体成员ConversionsforvarargCfunctionargumentsInitializers
- k8s系统学习路径
LCY133
kubernetes学习容器
学习Kubernetes(K8s)需要循序渐进,结合理论知识和实践操作。以下是学习Kubernetes的推荐步骤:1.先决条件•掌握容器基础:先学习Docker,理解容器化概念(镜像、容器、仓库)、Dockerfile编写和容器生命周期管理。•熟悉Linux基础:了解Linux命令行操作、网络、文件系统等。•了解云计算概念:如虚拟化、负载均衡、服务发现、分布式系统等。2.Kubernetes核心概
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分