- 最小二乘法(OLS)python 实践
参考链接:1,基本原理:https://zhuanlan.zhihu.com/p/1492809412,python实现:https://zhuanlan.zhihu.com/p/22692029实现结果线性回归:#--coding:utf-8--#简单线性回归demoimportnumpyasnpimportmatplotlib.pyplotaspltimportstatsmodels.apia
- Open3D 点到面的ICP配准算法
AtlasCloud
python点云数据处理算法人工智能python矩阵numpy
目录一、算法原理1、算法概述2、点到平面ICP精配准3、参考文献二、主要函数三、代码实现四、结果展示1、初始位置2、配准结果一、算法原理1、算法概述 点到平面度量通常使用标准非线性最小二乘法来求解,例如Levenberg-Marquardt。点到平面ICP算法的每次迭代通常比点到点算法慢,但收敛速度明显更快。两个点云之间的相对旋转小于30°,在旋转矩阵中用θ替换sinθ,用1替换cosθ实现用线
- 贝叶斯回归:从概率视角量化预测的不确定性
大千AI助手
人工智能Python#OTHER回归数据挖掘人工智能机器学习算法贝叶斯
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!贝叶斯方法在回归问题中的应用被称为贝叶斯回归(BayesianRegression)。与传统频率派的线性回归(如最小二乘法)不同,贝叶斯回归的核心思想是:将回归参数(如权重系数)视为随机变量,通过贝叶斯定理结合先验分布和观测数据,推导出参数的后验分布,
- 【零基础学AI】 第10讲:线性回归
1989
0基础学AI人工智能线性回归算法python回归numpy开源
本节课你将学到理解线性回归的原理和应用场景掌握最小二乘法的基本思想使用Python构建房价预测模型学会评估回归模型的性能指标开始之前环境要求Python3.8+JupyterNotebook或任何PythonIDE需要安装的包pipinstallscikit-learnpandasmatplotlibseabornnumpy前置知识第9讲:机器学习概述基本的Python和数据处理能力核心概念什么是
- open3d 点云拟合圆 mesh
扶子
python点云处理numpypythonopen3d经验分享点云拟合圆mesh
1、功能介绍:使用numpy和open3d进行二维圆拟合与三维可视化的完整示例。主要功能是对带有噪声的二维点云数据进行最小二乘法圆拟合,并使用open3d创建三角网格来可视化拟合出的圆形区域。2、代码部分:importnumpyasnpimportopen3daso3d#参数设置radius=5.0#圆的半径center=[0,0]#圆心num_points=200#点的数量noise_level
- 【GNSS原理】【最小二乘法】Chapter.5 GNSS定位算法——LS和WLS方法 [2025年4月]
牵星术小白
GNSS原理算法最小二乘法机器学习c++
Chapter.5GNSS定位算法——LS和WLS方法作者:齐花Guyc(CAUC)文章目录Chapter.5GNSS定位算法——LS和WLS方法一、引言二、LS方法三、WLS方法四、GNSSPVT解算流程中的LS和WLS一、引言在GNSS定位中,最小二乘法是一种核心算法,用于根据接收机获取的观测数据(如伪距、载波相位等)估算用户的位置、速度和时间偏差(PVT解算)。二、LS方法最小二乘法的核心是
- 最小二乘法的理论推导
士兵突击许三多
最小二乘法最小二乘法
最小二乘法的理论推导最小二乘法是一种通过最小化误差平方和来估计模型参数的方法。下面我将详细推导线性最小二乘法的理论过程,并给出相应的LaTeX公式。问题描述给定一组观测数据点(xi,yi),i=1,2,...,n(x_i,y_i),i=1,2,...,n(xi,yi),i=1,2,...,n,我们希望找到线性模型:y=ax+by=ax+by=ax+b使得模型预测值与实际观测值之间的误差平方和最小。
- Matlab 点云加权最小二乘法优化
完美代码
matlab最小二乘法开发语言点云
Matlab点云加权最小二乘法优化随着计算机视觉和三维图形学的发展,点云数据的处理和分析变得越来越重要。点云是三维空间中由大量的点组成的数据集合,常用于描述物体的形状和表面几何信息。在点云处理中,经常需要使用迭代加权最小二乘法对点云数据进行拟合优化。本文将介绍使用Matlab实现点云迭代加权最小二乘法优化的方法,并提供相应的源代码。点云表达首先,我们需要将点云数据以合适的方式表示在Matlab中。
- 最小二乘法
superdont
计算机视觉入门最小二乘法算法机器学习matlab矩阵人工智能计算机视觉
最小二乘法(LeastSquaresMethod)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。具体来说,它可以用于线性回归分析,即找到一条最佳拟合直线(或更一般的曲线或面),使得实际观察数据点到这条直线(或曲线/面)的垂直距离(也就是误差)的平方和达到最小。在数学表示上,如果有一组观测数据集((x_i,y_i)),其中(i=1,2,…,n),最小二乘法旨在找到一个模型(y=
- 最小二乘法算法(个人总结版)
爱吃辣椒的年糕
算法使用深度学习算法人工智能fpga开发信息与通信最小二乘法随笔
最小二乘法(LeastSquaresMethod)是一种通过最小化误差平方和来拟合数据的回归分析方法。它被广泛应用于线性回归、多元回归以及其他数据拟合问题中。以下是详细的教程,涵盖基本概念、数学推导、具体步骤和实现代码。1.最小二乘法基本概念最小二乘法是一种用于数据拟合的统计方法,通过最小化观测数据与模型预测值之间的误差平方和,求解模型参数。2.线性回归的最小二乘法线性回归是最简单的最小二乘法应用
- 最小二乘法,正则推导
若曦爹
https://blog.csdn.net/qq_40061206/article/details/112447541
- Blind Image Deblurring with Outlier Handling论文阅读
青铜锁00
论文阅读#退化论文阅读图像处理
BlindImageDeblurringwithOutlierHandling1.论文的研究目标与实际问题意义1.1研究目标1.2实际问题与产业意义2.论文提出的新方法、公式及优势2.1新思路与核心模型框架2.2鲁棒数据保真项的定义与数学特性2.3优化方法:迭代重加权最小二乘法(IRLS)2.3.1潜像估计xxx2.3.2模糊核估计kkk2.3.3权重机制的意义2.4与传统方法的对比与优势2.5非
- 白平衡校正中冯・克里兹参数计算过程详解
大熊背
ISP基础算法计算机视觉算法人工智能白平衡校正
目录一、概述二、算法详解算法核心逻辑初始化与数据结构迭代匹配过程鲁棒性设计三、算法的简化版实例步骤1:构造直方图步骤2:计算点对(x,y)步骤3:最小二乘法拟合直线结果解释关键原理总结一、概述博文基于直方图的冯・克里斯特映射白平衡校正讲解方法比较杂乱,本博文是针对基于直方图的冯・克里斯特映射白平衡校正博文的进一步详细的解答,参考相关论文:《IlluminantChangeEstimationvia
- Eigen 库实现最小二乘算法(Least Squares)
点云SLAM
算法算法Eigen数据工具库最小二乘算法SVD分解QR分解超定方程高斯-牛顿法
一、最小二乘法基本原理给定一个超定方程组Ax=bAx=bAx=b,当A∈Rm×n,m>nA\in\mathbb{R}^{m\timesn},m>nA∈Rm×n,m>n时,一般无法精确解出xxx。因此我们寻找一个使残差∥Ax−b∥22\|Ax-b\|_2^2∥Ax−b∥22最小的解。其解析解为:x=(ATA)−1ATbx=(A^TA)^{-1}A^Tbx=(ATA)−1ATb或者使用更稳定的方式:Q
- 概率论的基本概念
Mr.魏(魏先生)
概率论的起源与发展概率论产生于十六世纪十六世纪中叶,卡当在赌博时研究不输的方法1654年,德·美黑——“合理分配赌注问题”1657年,惠更斯——《论机会游戏的计算》1933年,柯尔莫哥洛夫——《概率论的基本概念》数理统计的历史1763年,贝叶斯贝叶斯方法1809年,高斯和勒让德——最小二乘法皮尔逊、戈赛特、费歇——频率曲线、多元分析、估计和方差分析概率论是数理统计学的基础,数理统计学是概率论的一种
- 极大似然估计与机器学习
xsddys
机器学习人工智能
复习概统的时候突然发现好像极大似然估计MLE与机器学习的数据驱动非常相似,都是采样样本然后估计模型参数。貌似,后知后觉的才意识到极大似然估计就是机器学习有效的数学保证下面以拟合线性分布的最小二乘与分类问题为例推到以下如何从似然函数推导出MSE损失与交叉熵损失一、线性回归的最小二乘法1.概率模型设定假设数据由线性模型生成,且观测噪声服从正态分布:y=wTx+ϵ,ϵ∼N(0,σ2)y=\mathbf{
- Python 用 NumPy 实现简单的线性回归
Python编程之道
pythonnumpy线性回归ai
Python用NumPy实现简单的线性回归关键词:Python、NumPy、线性回归、机器学习、最小二乘法摘要:本文深入探讨了如何使用Python的NumPy库实现简单的线性回归。线性回归是机器学习中基础且重要的算法,在预测分析等领域有广泛应用。我们将从线性回归的核心概念入手,详细介绍其原理和架构,阐述核心算法的原理及具体操作步骤,并结合数学模型和公式进行深入讲解。通过实际的项目实战案例,展示如何
- 光流 | Matlab工具中的光流算法
单北斗SLAMer
OpticalFlow(光流)算法图像处理信息与通信matlab
在MATLAB中,光流算法用于估计图像序列中物体的运动。以下是详细解释及实现步骤:1.光流算法基础光流基于两个核心假设:亮度恒定:同一物体在连续帧中的像素亮度不变。微小运动:相邻帧之间的时间间隔短,物体运动幅度小。常见算法:Lucas-Kanade(局部方法):假设局部窗口内光流恒定,通过最小二乘法求解。Horn-Schunck(全局方法):引入全局平滑性约束,通过优化整体能量函数求解。Farne
- PCL 将点云投影到拟合平面
MelaCandy
PCL点云算法与实战案例平面3d计算机视觉c++算法
PCL点云算法汇总及实战案例汇总的目录地址链接:PCL点云算法与项目实战案例汇总(长期更新)一、概述点云投影到拟合平面是指将三维点云数据中的点投影到与其最接近的二维平面上。通过投影到平面,可以消除数据的高度变化或Z轴信息,使得点云数据在平面上更加集中和规整。这在点云简化、平面特征提取和2D视觉分析中非常有用。1.1原理平面拟合和投影的过程通常涉及以下几个步骤:1.平面拟合:使用最小二乘法拟合点云的
- 最小二乘法实现圆的拟合
#君#
笔记最小二乘法算法机器学习
示例1:#include#include#include#include//二维点结构体structPoint2D{doublex;doubley;};//圆结构体(结果容器)structCircle{Point2Dcenter;doubleradius;boolvalid=false;//拟合有效性标志};//最小二乘圆拟合核心算法CirclefitCircleLeastSquares(cons
- 线性回归算法解密:从基础到实战的完整指南
智能计算研究中心
其他
内容概要线性回归算法是统计学与机器学习中一种常用的预测方法,它的核心思想是通过学习输入特征与输出变量之间的关系,以便对未来的数据进行预测。本文将从线性回归的基本概念入手,逐步深入,帮助读者全面掌握这一算法。本文旨在为读者提供系统而清晰的线性回归知识框架,以便在实际应用中能够灵活运用。首先,我们将解释线性回归的数学原理,包括如何构建模型以及利用最小二乘法进行参数估计。接着,针对数据预处理与特征选择,
- 基于随机森林和Xgboost对肥胖风险的多类别预测
i阿极
机器学习机器学习案例XGBoot随机森林python
基于随机森林和Xgboost对肥胖风险的多类别预测作者:i阿极作者简介:数据分析领域优质创作者、多项比赛获奖者:博主个人首页如果觉得文章不错或能帮助到你学习,可以点赞收藏评论+关注哦!如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!大家好,我i阿极。喜欢本专栏的小伙伴,请多多支持专栏案例:机器学习案例机器学习(一):线性回归之最小二乘法机器学习(二):线性回归之梯度下降法机器
- 量化交易之数学与统计学基础2.3——线性代数与矩阵运算 | 线性方程组
灏瀚星空
回归最小二乘法数据挖掘python笔记开源信息可视化
量化交易之数学与统计学基础2.3——线性代数与矩阵运算|线性方程组第二部分:线性代数与矩阵运算第3节:线性方程组:多因子模型中的回归分析与最小二乘法求解一、引言在量化投资领域,多因子模型是解析资产收益率的核心工具之一。其核心假设是资产收益率由多个因子的线性组合驱动,而最小二乘法(OLS)作为求解线性回归参数的经典方法,为因子系数估计提供了理论支撑和实践工具。本文将深入解析多因子模型的线性方程组构建
- OpenCV 图形API(66)图像结构分析和形状描述符------将一条直线拟合到三维点集上函数fitLine3D()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述拟合一条直线到3D点集。该函数通过最小化∑iρ(ri)来将一条直线拟合到3D点集,其中ri是第i个点与直线之间的距离,ρ®是距离函数,可以是以下之一:DIST_L2ρ(r)=r2/2(最简单且最快的最小二乘法)\rho(r)=r^2/2\quad\text{(最简
- PCL学习:基于多项式平滑点云及法线估计的曲面重建
JoannaJuanCV
PCL学习
一.基于多项式平滑点云及法线估计的曲面重建本小节介绍基于移动最小二乘法(MLS)的法线估计、点云平滑和数据重采样。有时,测量较小的对象时会产生一些误差,这些误差所造成的不规则数据如果直接拿来曲面重建的话会使重建的曲面不光滑或者有漏洞。这些不规则很难用统计分析消除,所以为了建立完整的模型必须对表面进行平滑处理和漏洞修复。在不能进行额外扫描的情况下,我们可以通过对数据重采样来解决这一问题,重采样算法通
- 机器学习基础 - 回归模型之线性回归
yousuotu
面试题机器学习回归线性回归
机器学习:线性回归文章目录机器学习:线性回归1.线性回归1.简介2.线性回归如何训练?1.损失函数2.正规方程3.梯度下降法4.两种方法的比较2.岭回归岭回归与线性回归3.Lasso回归4.ElasticNet回归LWR-局部加权回归QA1.最小二乘法估计2.最小二乘法的几何解释3.从概率角度看最小二乘法4.推一下线性回归的反向传播5.什么时候使用岭回归?6.什么时候使用L1正则化?7.什么时候使
- 【MATLAB代码例程】AOA与TOA结合的高精度平面地位,适用于四个基站的情况,附完整的代码
MATLAB卡尔曼
MATLAB定位程序与详解matlab平面开发语言
本代码实现了一种基于到达角(AOA)和到达时间(TOA)的混合定位算法,适用于二维平面内移动或静止目标的定位。通过4个基站的协同测量,结合最小二乘法和几何解算,能够有效估计目标位置,并支持噪声模拟、误差分析和可视化输出。适用于室内定位、无人机导航、工业监测等场景。文章目录运行结果MATLAB源代码代码讲解算法原理技术亮点应用场景扩展性建议运行结果定位示意图:运行结果:MATLAB源代码%AOA与T
- TOA与AOA联合定位的高精度算法,三维、4个基站的情况,MATLAB例程,附完整代码
MATLAB卡尔曼
MATLAB定位程序与详解算法matlab开发语言
本代码实现了三维空间内目标的高精度定位,结合到达角(AOA)和到达时间(TOA)两种测量方法,通过4个基站的协同观测,利用最小二乘法解算目标位置。代码支持噪声模拟、误差分析及三维可视化,适用于无人机导航、室内定位等场景。订阅专栏后可获得完整代码文章目录运行结果MATLAB例程代码介绍算法原理技术亮点代码结构应用场景扩展建议运行结果运行结果:命令行输出截图:部分代码截图:
- 线性回归
进来有惊喜
线性回归机器学习回归
1、线性回归的简单介绍2.安装第三方库3、一元线性回归示例说明4、多元线性回归示例5.总结1.线性回归的介绍定义:线性回归是一种用于建立变量之间线性关系的统计模型,通过一个或多个自变量来预测一个因变量的值。原理:其核心原理是最小二乘法,即通过寻找一条直线(在一元线性回归中)或一个超平面(在多元线性回归中),使得数据点到这条直线或超平面的距离的平方和最小。这条直线或超平面就是对数据的最佳拟合。分类:
- MATLAB在非线性规划中的应用实践
一朵小小玫
MATLAB非线性规划最小二乘法遗传算法优化方法选择
MATLAB在非线性规划中的应用实践背景简介随着数学建模和计算技术的发展,非线性规划(Non-LinearProgramming,NLP)在工程和科学领域得到了广泛的应用。MATLAB作为一种强大的数学软件,提供了丰富的内置函数和工具箱,专门用于解决非线性规划问题。本文将探讨MATLAB在非线性规划中的应用,包括最小二乘曲线拟合、遗传算法的使用,以及如何根据问题类型选择合适的优化方法。最小二乘法与
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那