深入浅出ConcurrentHashMap1.8,是如何保证线程安全的?扩容实现详解?

目录

  • 前言
  • JDK1.7分析
  • JDK1.8分析
    • 重要概念
    • 实例初始化
    • table初始化
    • put操作
      • 1.hash算法
      • 2.table中定位索引位置,n是table的大小,为啥一定是2的幂
      • 3.获取table中对应索引的元素f
      • 4.如果f为null,说明table中这个位置第一次插入元素,利用Unsafe.compareAndSwapObject方法插入Node节点。
      • 5.如果f的hash值为-1,说明当前f是ForwardingNode节点,意味有其它线程正在扩容,则一起进行扩容操作。
      • 6.其余情况把新的Node节点按链表或红黑树的方式插入到合适的位置,这个过程采用同步内置锁实现并发
    • table扩容
    • 红黑树构造
    • get操作
  • ConcurrentHashMap1.8的扩容实现详解
    • transfer实现
      • 1、根据当前数组长度n,新建一个两倍长度的数组nextTable;
      • 2、初始化ForwardingNode节点,其中保存了新数组nextTable的引用,在处理完每个槽位的节点之后当做占位节点,表示该槽位已经处理过了;
      • 3、通过for自循环处理每个槽位中的链表元素,默认advace为真,通过CAS设置transferIndex属性值,并初始化i和bound值,i指当前处理的槽位序号,bound指需要处理的槽位边界,先处理槽位15的节点;
      • 4、在当前假设条件下,槽位15中没有节点,则通过CAS插入在第二步中初始化的ForwardingNode节点,用于告诉其它线程该槽位已经处理过了;
      • 5、如果槽位15已经被线程A处理了,那么线程B处理到这个节点时,取到该节点的hash值应该为MOVED,值为-1,则直接跳过,继续处理下一个槽位14的节点;
      • 6、继续处理槽位14的节点,是一个链表结构,先定义两个变量节点ln和hn,按我的理解应该是lowNode和highNode,分别保存hash值的第X位为0和1的节点,
      • 7、如果该槽位是红黑树结构,则构造树节点lo和hi,遍历红黑树中的节点,同样根据hash&n算法,把节点分为两类,分别插入到lo和hi为头的链表中,根据lo和hi链表中的元素个数分别生成ln和hn节点
      • 8、最后,同样的通过CAS把ln设置到新数组的i位置,hn设置到i+n位置
        总结

前言

HashMap是我们平时开发过程中用的比较多的集合,但它是非线程安全的,在涉及到多线程并发的情况,进行get操作有可能会引起死循环,导致CPU利用率接近100%。

final HashMap<String, String> map = new HashMap<String, String>(2);
for (int i = 0; i < 10000; i++) {
    new Thread(new Runnable() {
        @Override
        public void run() {
            map.put(UUID.randomUUID().toString(), "");
        }
    }).start();
}

解决方案有Hashtable和Collections.synchronizedMap(hashMap),不过这两个方案基本上是对读写进行加锁操作,一个线程在读写元素,其余线程必须等待,性能可想而知。

所以,Doug Lea给我们带来了并发安全的ConcurrentHashMap,它的实现是依赖于 Java 内存模型,所以我们在了解 ConcurrentHashMap 的之前必须了解一些底层的知识:

  1. java内存模型
  2. java中的Unsafe
  3. java中的CAS
  4. 深入浅出java同步器
  5. 深入浅出ReentrantLock

本文源码是JDK8的版本,与之前的版本有较大差异。

JDK1.7分析

ConcurrentHashMap采用 分段锁的机制,实现并发的更新操作,底层采用数组+链表的存储结构。
其包含两个核心静态内部类 Segment和HashEntry。

  1. Segment继承ReentrantLock用来充当锁的角色,每个 Segment 对象守护每个散列映射表的若干个桶。
  2. HashEntry 用来封装映射表的键 / 值对;
  3. 每个桶是由若干个 HashEntry 对象链接起来的链表。

一个 ConcurrentHashMap 实例中包含由若干个 Segment 对象组成的数组,下面我们通过一个图来演示一下 ConcurrentHashMap 的结构:

深入浅出ConcurrentHashMap1.8,是如何保证线程安全的?扩容实现详解?_第1张图片

JDK1.8分析

1.8的实现已经抛弃了Segment分段锁机制,利用CAS+Synchronized来保证并发更新的安全,底层采用数组+链表+红黑树的存储结构。
深入浅出ConcurrentHashMap1.8,是如何保证线程安全的?扩容实现详解?_第2张图片

重要概念

在开始之前,有些重要的概念需要介绍一下:

  1. table:默认为null,初始化发生在第一次插入操作,默认大小为16的数组,用来存储Node节点数据,扩容时大小总是2的幂次方。
  2. nextTable:默认为null,扩容时新生成的数组,其大小为原数组的两倍。
  3. sizeCtl :默认为0,用来控制table的初始化和扩容操作,具体应用在后续会体现出来。
    • -1 代表table正在初始化
    • -N 表示有N-1个线程正在进行扩容操作
    • 其余情况:
      1、如果table未初始化,表示table需要初始化的大小。
      2、如果table初始化完成,表示table的容量,默认是table大小的0.75倍,居然用这个公式算0.75(n - (n >>> 2))。
  4. Node:保存key,value及key的hash值的数据结构。
class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    volatile V val;
    volatile Node<K,V> next;
    ... 省略部分代码
}

其中value和next都用volatile修饰,保证并发的可见性。

  1. ForwardingNode:一个特殊的Node节点,hash值为-1,其中存储nextTable的引用。
final class ForwardingNode<K,V> extends Node<K,V> {
    final Node<K,V>[] nextTable;
    ForwardingNode(Node<K,V>[] tab) {
        super(MOVED, null, null, null);
        this.nextTable = tab;
    }
}

只有table发生扩容的时候,ForwardingNode才会发挥作用,作为一个占位符放在table中表示当前节点为null或则已经被移动。

实例初始化

实例化ConcurrentHashMap时带参数时,会根据参数调整table的大小,假设参数为100,最终会调整成256,确保table的大小总是2的幂次方,算法如下:

ConcurrentHashMap<String, String> hashMap = new ConcurrentHashMap<>(100);
private static final int tableSizeFor(int c) {
    int n = c - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

注意,ConcurrentHashMap在构造函数中只会初始化sizeCtl值,并不会直接初始化table,而是延缓到第一次put操作。

table初始化

前面已经提到过,table初始化操作会延缓到第一次put行为。但是put是可以并发执行的,Doug Lea是如何实现table只初始化一次的?让我们来看看源码的实现。

private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
//如果一个线程发现sizeCtl<0,意味着另外的线程执行CAS操作成功,当前线程只需要让出cpu时间片
        if ((sc = sizeCtl) < 0) 
            Thread.yield(); // lost initialization race; just spin
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    sc = n - (n >>> 2);
                }
            } finally {
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

sizeCtl默认为0,如果ConcurrentHashMap实例化时有传参数,sizeCtl会是一个2的幂次方的值。所以执行第一次put操作的线程会执行Unsafe.compareAndSwapInt方法修改sizeCtl为-1,有且只有一个线程能够修改成功,其它线程通过Thread.yield()让出CPU时间片等待table初始化完成。

put操作

假设table已经初始化完成,put操作采用CAS+synchronized实现并发插入或更新操作,具体实现如下。

final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        ...省略部分代码
    }
    addCount(1L, binCount);
    return null;
}
1.hash算法
static final int spread(int h) {return (h ^ (h >>> 16)) & HASH_BITS;}
2.table中定位索引位置,n是table的大小,为啥一定是2的幂
int index = (n - 1) & hash

这里是计算数组索引下标的位置

&为二进制中的与运算

运算规则:0&0=0; 0&1=0; 1&0=0; 1&1=1;

即:两位同时为“1”,结果才为“1”,否则为0

因为hashMap 的数组长度都是2的n次幂 ,那么对于这个数再减去1,转换成二进制的话,就肯定是最高位为0,其他位全是1 的数。

那以数组长度为8为例(默认HashMap初始数组长度是16),那8-1 转成二进制的话,就是0111 。 那我们举一个随便的hashCode值,与0111进行与运算看看结果如何:

数字8减去1转换成二进制是0111,即下边的情况:

 第一个key:        hashcode值:10101001    
                            &      0111                                      
                                   0001  (十进制为1-------------------------------------------                           
 第二个key:       hashcode值:11101000    
                           &       0111      
                                   0000  (十进制为0--------------------------------------------               
 第三个key:       hashcode值:11101110    
                          &       0111      
                                  0110  (十进制为6

这样得到的数,就会完整的得到原hashcode 值的低位值,不会受到与运算对数据的变化影响。

数字7减去1转换成二进制是0110,即下边的情况:

 第一个key:      hashcode值:10101001    
                         &       0110                                      
                                 0000  (十进制为0------------------------------------------                           
  第二个key:      hashcode值:11101000    
                          &       0110      
                                  0000  (十进制为0--------------------------------------------               
  第三个key:      hashcode值:11101110    
                          &       0111      
                                  0110  (十进制为6

通过上边可以看到,当数组长度不为2的n次幂 的时候,hashCode 值与数组长度减一做与运算 的时候,会出现重复的数据,

因为不为2的n次幂 的话,对应的二进制数肯定有一位为0 , 这样不管你的hashCode 值对应的该位,是0还是1 ,

最终得到的该位上的数肯定是0,这带来的问题就是HashMap上的数组元素分布不均匀,而数组上的某些位置,永远也用不到。

如下图所示:
深入浅出ConcurrentHashMap1.8,是如何保证线程安全的?扩容实现详解?_第3张图片
这将带来的问题就是你的HashMap 数组的利用率太低,并且链表可能因为上边的(n - 1) & hash 运算结果碰撞率过高,导致链表太深。(当然jdk 1.8已经在链表数据超过8个以后转换成了红黑树的操作,但那样也很容易造成它们之间的转换时机的提前到来),所以说HashMap的长度一定是2的次幂,否则会出现性能问题。

3.获取table中对应索引的元素f

Doug Lea采用Unsafe.getObjectVolatile来获取,也许有人质疑,直接table[index]不可以么,为什么要这么复杂?

static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }

在java内存模型中,我们已经知道每个线程都有一个工作内存,里面存储着table的副本,虽然table是volatile修饰的,但不能保证线程每次都拿到table中的最新元素,Unsafe.getObjectVolatile可以直接获取指定内存的数据,保证了每次拿到数据都是最新的。

4.如果f为null,说明table中这个位置第一次插入元素,利用Unsafe.compareAndSwapObject方法插入Node节点。
  • 如果CAS成功,说明Node节点已经插入,随后addCount(1L, binCount)方法会检查当前容量是否需要进行扩容。
  • 如果CAS失败,说明有其它线程提前插入了节点,自旋重新尝试在这个位置插入节点。
5.如果f的hash值为-1,说明当前f是ForwardingNode节点,意味有其它线程正在扩容,则一起进行扩容操作。

看后面扩容介绍

6.其余情况把新的Node节点按链表或红黑树的方式插入到合适的位置,这个过程采用同步内置锁实现并发,代码如下:
synchronized (f) {
    if (tabAt(tab, i) == f) {
        if (fh >= 0) {
            binCount = 1;
            for (Node<K,V> e = f;; ++binCount) {
                K ek;
                if (e.hash == hash &&
                    ((ek = e.key) == key ||
                     (ek != null && key.equals(ek)))) {
                    oldVal = e.val;
                    if (!onlyIfAbsent)
                        e.val = value;
                    break;
                }
                Node<K,V> pred = e;
                if ((e = e.next) == null) {
                    pred.next = new Node<K,V>(hash, key,
                                              value, null);
                    break;
                }
            }
        }
        else if (f instanceof TreeBin) {
            Node<K,V> p;
            binCount = 2;
            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                           value)) != null) {
                oldVal = p.val;
                if (!onlyIfAbsent)
                    p.val = value;
            }
        }
    }
}

在节点f上进行同步,节点插入之前,再次利用tabAt(tab, i) == f判断,防止被其它线程修改。

  1. 如果f.hash >= 0,说明f是链表结构的头结点,遍历链表,如果找到对应的node节点,则修改value,否则在链表尾部加入节点。
  2. 如果f是TreeBin类型节点,说明f是红黑树根节点,则在树结构上遍历元素,更新或增加节点。
  3. 如果链表中节点数binCount >= TREEIFY_THRESHOLD(默认是8),则把链表转化为红黑树结构。

table扩容

当table容量不足的时候,即table的元素数量达到容量阈值sizeCtl,需要对table进行扩容。
整个扩容分为两部分:

  1. 构建一个nextTable,大小为table的两倍。
  2. 把table的数据复制到nextTable中。

这两个过程在单线程下实现很简单,但是ConcurrentHashMap是支持并发插入的,扩容操作自然也会有并发的出现,这种情况下,第二步可以支持节点的并发复制,这样性能自然提升不少,但实现的复杂度也上升了一个台阶。

先看第一步,构建nextTable,毫无疑问,这个过程只能只有单个线程进行nextTable的初始化,具体实现如下:

private final void addCount(long x, int check) {
    ... 省略部分代码
    if (check >= 0) {
        Node<K,V>[] tab, nt; int n, sc;
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
               (n = tab.length) < MAXIMUM_CAPACITY) {
            int rs = resizeStamp(n);
            if (sc < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
            s = sumCount();
        }
    }
}

通过Unsafe.compareAndSwapInt修改sizeCtl值,保证只有一个线程能够初始化nextTable,扩容后的数组长度为原来的两倍,但是容量是原来的1.5。

节点从table移动到nextTable,大体思想是遍历、复制的过程。

  1. 首先根据运算得到需要遍历的次数i,然后利用tabAt方法获得i位置的元素f,初始化一个forwardNode实例fwd。
  2. 如果f == null,则在table中的i位置放入fwd,这个过程是采用Unsafe.compareAndSwapObjectf方法实现的,很巧妙的实现了节点的并发移动。
  3. 如果f是链表的头节点,就构造一个反序链表,把他们分别放在nextTable的i和i+n的位置上,移动完成,采用Unsafe.putObjectVolatile方法给table原位置赋值fwd。
  4. 如果f是TreeBin节点,也做一个反序处理,并判断是否需要untreeify,把处理的结果分别放在nextTable的i和i+n的位置上,移动完成,同样采用Unsafe.putObjectVolatile方法给table原位置赋值fwd。
    遍历过所有的节点以后就完成了复制工作,把table指向nextTable,并更新sizeCtl为新数组大小的0.75倍 ,扩容完成。

红黑树构造

注意:如果链表结构中元素超过TREEIFY_THRESHOLD阈值,默认为8个,则把链表转化为红黑树,提高遍历查询效率。

if (binCount != 0) {
    if (binCount >= TREEIFY_THRESHOLD)
        treeifyBin(tab, i);
    if (oldVal != null)
        return oldVal;
    break;
}

接下来我们看看如何构造树结构,代码如下:

private final void treeifyBin(Node<K,V>[] tab, int index) {
    Node<K,V> b; int n, sc;
    if (tab != null) {
        if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
            tryPresize(n << 1);
        else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
            synchronized (b) {
                if (tabAt(tab, index) == b) {
                    TreeNode<K,V> hd = null, tl = null;
                    for (Node<K,V> e = b; e != null; e = e.next) {
                        TreeNode<K,V> p =
                            new TreeNode<K,V>(e.hash, e.key, e.val,
                                              null, null);
                        if ((p.prev = tl) == null)
                            hd = p;
                        else
                            tl.next = p;
                        tl = p;
                    }
                    setTabAt(tab, index, new TreeBin<K,V>(hd));
                }
            }
        }
    }
}

可以看出,生成树节点的代码块是同步的,进入同步代码块之后,再次验证table中index位置元素是否被修改过。

  • 1、根据table中index位置Node链表,重新生成一个hd为头结点的TreeNode链表。
  • 2、根据hd头结点,生成TreeBin树结构,并把树结构的root节点写到table的index位置的内存中,具体实现如下:
TreeBin(TreeNode<K,V> b) {
    super(TREEBIN, null, null, null);
    this.first = b;
    TreeNode<K,V> r = null;
    for (TreeNode<K,V> x = b, next; x != null; x = next) {
        next = (TreeNode<K,V>)x.next;
        x.left = x.right = null;
        if (r == null) {
            x.parent = null;
            x.red = false;
            r = x;
        }
        else {
            K k = x.key;
            int h = x.hash;
            Class<?> kc = null;
            for (TreeNode<K,V> p = r;;) {
                int dir, ph;
                K pk = p.key;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0)
                    dir = tieBreakOrder(k, pk);
                    TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    x.parent = xp;
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    r = balanceInsertion(r, x);
                    break;
                }
            }
        }
    }
    this.root = r;
    assert checkInvariants(root);
}

主要根据Node节点的hash值大小构建二叉树。这个红黑树的构造过程实在有点复杂,感兴趣的同学可以看看源码。

get操作

get操作和put操作相比,简单了许多。

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode());
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        //hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable(扩容新数组)
        //eh=-1,说明该节点是一个ForwardingNode,正在迁移,此时调用ForwardingNode的find方法去nextTable里找。
        //eh=-2,说明该节点是一个TreeBin,此时调用TreeBin的find方法遍历红黑树,由于红黑树有可能正在旋转变色,所以find里会有读写锁。
        //eh>=0,说明该节点下挂的是一个链表,直接遍历该链表即可。
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        while ((e = e.next) != null) {
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}
  1. 判断table是否为空,如果为空,直接返回null;

  2. 首先计算hash值,定位到该table索引位置,如果是首节点符合就返回;

  3. 如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回

    • hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable(扩容新数组)
    • eh=-1,说明该节点是一个ForwardingNode,正在迁移,此时调用ForwardingNode的find方法去nextTable里找。
    • eh=-2,说明该节点是一个TreeBin,此时调用TreeBin的find方法遍历红黑树,由于红黑树有可能正在旋转变色,所以find里会有读写锁。
  4. 以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null

    • eh>=0,说明该节点下挂的是一个链表,直接遍历该链表即可。 通过遍历链表或则树结构找到对应的节点,返回value值。
ConcurrentHashMap是如何保证线程安全的?

jdk1.7中是采用Segment + HashEntry + ReentrantLock的方式进行实现的,而1.8中放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized+volatile来保证并发安全进行实现

get没有加锁的话,ConcurrentHashMap是如何保证读到的数据不是脏数据的呢?

对于可见性,Java提供了volatile关键字来保证可见性、有序性。但不保证原子性。

  1. volatile修饰数组,只是意思和它表面上看起来的样子不同。举个栗子,volatile int array[10]是指array的地址是volatile的而不是数组元素的值是volatile的,保证了Node数组在扩容的时候对其他线程具有可见性。
  2. 用volatile修饰的Node,get操作可以无锁是由于Node的元素val和指针next是用volatile修饰的,在多线程环境下线程A修改结点的val或者新增节点的时候是对线程B可见的。
	//table数组用volatile修饰
  transient volatile Node<K,V>[] table;

 static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        //Node的value值用volatile修饰
        volatile V val;
        //Node的next节点用volatile修饰
        volatile Node<K,V> next;

        Node(int hash, K key, V val, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.val = val;
            this.next = next;
        }

        public final K getKey()       { return key; }
        public final V getValue()     { return val; }
        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
        public final String toString(){ return key + "=" + val; }
        public final V setValue(V value) {
            throw new UnsupportedOperationException();
        }

        public final boolean equals(Object o) {
            Object k, v, u; Map.Entry<?,?> e;
            return ((o instanceof Map.Entry) &&
                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
                    (v = e.getValue()) != null &&
                    (k == key || k.equals(key)) &&
                    (v == (u = val) || v.equals(u)));
        }

        /**
         * Virtualized support for map.get(); overridden in subclasses.
         */
        Node<K,V> find(int h, Object k) {
            Node<K,V> e = this;
            if (k != null) {
                do {
                    K ek;
                    if (e.hash == h &&
                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
                        return e;
                } while ((e = e.next) != null);
            }
            return null;
        }
    }

小结
  • 在1.8中ConcurrentHashMap的get操作全程不需要加锁,这也是它比其他并发集合比如hashtable、用Collections.synchronizedMap()包装的hashmap;安全效率高的原因之一。

  • get操作全程不需要加锁是因为Node的成员val是用volatile修饰的和数组用volatile修饰没有关系。

  • 数组用volatile修饰主要是保证在数组扩容的时候保证可见性。

ConcurrentHashMap1.8的扩容实现详解

当往hashMap中成功插入一个key/value节点时,有可能触发扩容动作:

  • 1、如果新增节点之后,所在链表的元素个数达到了阈值 8,则会调用treeifyBin方法把链表转换成红黑树,不过在结构转换之前,会对数组长度进行判断,如果数组长度n小于阈值MIN_TREEIFY_CAPACITY,默认是64,则会调用tryPresize方法把数组长度扩大到原来的两倍,并触发transfer方法,重新调整节点的位置。
  • 2、新增节点之后,会调用addCount方法记录元素个数,并检查是否需要进行扩容,当数组元素个数达到阈值时,会触发transfer方法,重新调整节点的位置。

1、如果新增节点之后,所在链表的元素个数达到了阈值 8,则会调用treeifyBin方法把链表转换成红黑树,不过在结构转换之前,会对数组长度进行判断,实现如下:
深入浅出ConcurrentHashMap1.8,是如何保证线程安全的?扩容实现详解?_第4张图片

如果数组长度n小于阈值MIN_TREEIFY_CAPACITY,默认是64,则会调用tryPresize方法把数组长度扩大到原来的两倍,并触发transfer方法,重新调整节点的位置。
深入浅出ConcurrentHashMap1.8,是如何保证线程安全的?扩容实现详解?_第5张图片
2、新增节点之后,会调用addCount方法记录元素个数,并检查是否需要进行扩容,当数组元素个数达到阈值时,会触发transfer方法,重新调整节点的位置。
深入浅出ConcurrentHashMap1.8,是如何保证线程安全的?扩容实现详解?_第6张图片

transfer实现

transfer方法实现了在并发的情况下,高效的从原始组数往新数组中移动元素,假设扩容之前节点的分布如下,这里区分蓝色节点和红色节点,是为了后续更好的分析:
深入浅出ConcurrentHashMap1.8,是如何保证线程安全的?扩容实现详解?_第7张图片

 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

以下代码都是transfer(Node[] tab, Node[] nextTab)方法的片段

在上图中,第14个槽位插入新节点之后,链表元素个数已经达到了8,且数组长度为16,优先通过扩容来缓解链表过长的问题,实现如下:

1、根据当前数组长度n,新建一个两倍长度的数组nextTable;

深入浅出ConcurrentHashMap1.8,是如何保证线程安全的?扩容实现详解?_第8张图片

2、初始化ForwardingNode节点,其中保存了新数组nextTable的引用,在处理完每个槽位的节点之后当做占位节点,表示该槽位已经处理过了;

在这里插入图片描述

3、通过for自循环处理每个槽位中的链表元素,默认advace为真,通过CAS设置transferIndex属性值,并初始化i和bound值,i指当前处理的槽位序号,bound指需要处理的槽位边界,先处理槽位15的节点;

深入浅出ConcurrentHashMap1.8,是如何保证线程安全的?扩容实现详解?_第9张图片

4、在当前假设条件下,槽位15中没有节点,则通过CAS插入在第二步中初始化的ForwardingNode节点,用于告诉其它线程该槽位已经处理过了;

在这里插入图片描述

5、如果槽位15已经被线程A处理了,那么线程B处理到这个节点时,取到该节点的hash值应该为MOVED,值为-1,则直接跳过,继续处理下一个槽位14的节点;

在这里插入图片描述

6、继续处理槽位14的节点,是一个链表结构,先定义两个变量节点ln和hn,按我的理解应该是lowNode和highNode,分别保存hash值的第X位为0和1的节点,具体实现如下:

深入浅出ConcurrentHashMap1.8,是如何保证线程安全的?扩容实现详解?_第10张图片
使用fh&n可以快速把链表中的元素区分成两类,A类是hash值的第X位为0,B类是hash值的第X位为1,并通过lastRun记录最后需要处理的节点,A类和B类节点可以分散到新数组的槽位14和30中,在原数组的槽位14中,蓝色节点第X为0,红色节点第X为1,把链表拉平显示如下:
在这里插入图片描述

  • 1、通过遍历链表,记录runBit和lastRun,分别为1和节点6,所以设置hn为节点6,ln为null;
  • 2、重新遍历链表,以lastRun节点为终止条件,根据第X位的值分别构造ln链表和hn链表:

ln链:和原来链表相比,顺序已经不一样了

在这里插入图片描述
hn链:
在这里插入图片描述
通过CAS把ln链表设置到新数组的i位置,hn链表设置到i+n的位置;

7、如果该槽位是红黑树结构,则构造树节点lo和hi,遍历红黑树中的节点,同样根据hash&n算法,把节点分为两类,分别插入到lo和hi为头的链表中,根据lo和hi链表中的元素个数分别生成ln和hn节点,其中ln节点的生成逻辑如下:

(1)如果lo链表的元素个数小于等于UNTREEIFY_THRESHOLD,默认为6,则通过untreeify方法把树节点链表转化成普通节点链表;
(2)否则判断hi链表中的元素个数是否等于0:如果等于0,表示lo链表中包含了所有原始节点,则设置原始红黑树给ln,否则根据lo链表重新构造红黑树。
深入浅出ConcurrentHashMap1.8,是如何保证线程安全的?扩容实现详解?_第11张图片
最后,同样的通过CAS把ln设置到新数组的i位置,hn设置到i+n位置。

总结

ConcurrentHashMap 是一个并发散列映射表的实现,它允许完全并发的读取,并且支持给定数量的并发更新。相比于 HashTable 和同步包装器包装的 HashMap,使用一个全局的锁来同步不同线程间的并发访问,同一时间点,只能有一个线程持有锁,也就是说在同一时间点,只能有一个线程能访问容器,这虽然保证多线程间的安全并发访问,但同时也导致对容器的访问变成串行化的了。
1.6中采用ReentrantLock 分段锁的方式,使多个线程在不同的segment上进行写操作不会发现阻塞行为;1.8中直接采用了内置锁synchronized,难道是因为1.8的虚拟机对内置锁已经优化的足够快了?

参考:
https://www.jianshu.com/p/c0642afe03e0

https://www.jianshu.com/p/f6730d5784ad

https://blog.csdn.net/tane_1018/article/details/103392267

你可能感兴趣的:(java,集合框架,并发)