C++洛谷P1003 [NOIP2011 提高组] 铺地毯

[NOIP2011 提高组] 铺地毯

题目描述

为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 n n n 张地毯,编号从 1 1 1 n n n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。

地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。

输入格式

输入共 n + 2 n + 2 n+2 行。

第一行,一个整数 n n n,表示总共有 n n n 张地毯。

接下来的 n n n 行中,第 i + 1 i+1 i+1 行表示编号 i i i 的地毯的信息,包含四个整数 a , b , g , k a ,b ,g ,k a,b,g,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 ( a , b ) (a, b) (a,b) 以及地毯在 x x x 轴和 y y y 轴方向的长度。

n + 2 n + 2 n+2 行包含两个整数 x x x y y y,表示所求的地面的点的坐标 ( x , y ) (x, y) (x,y)

输出格式

输出共 1 1 1 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出 -1

样例 #1

样例输入 #1

3
1 0 2 3
0 2 3 3
2 1 3 3
2 2

样例输出 #1

3

样例 #2

样例输入 #2

3
1 0 2 3
0 2 3 3
2 1 3 3
4 5

样例输出 #2

-1

提示

【样例解释 1】

如下图, 1 1 1 号地毯用实线表示, 2 2 2 号地毯用虚线表示, 3 3 3 号用双实线表示,覆盖点 ( 2 , 2 ) (2,2) (2,2) 的最上面一张地毯是 3 3 3 号地毯。

C++洛谷P1003 [NOIP2011 提高组] 铺地毯_第1张图片

【数据范围】

对于 30 % 30\% 30% 的数据,有 n ≤ 2 n \le 2 n2
对于 50 % 50\% 50% 的数据, 0 ≤ a , b , g , k ≤ 100 0 \le a, b, g, k \le 100 0a,b,g,k100
对于 100 % 100\% 100% 的数据,有 0 ≤ n ≤ 1 0 4 0 \le n \le 10^4 0n104, 0 ≤ a , b , g , k ≤ 10 5 0 \le a, b, g, k \le {10}^5 0a,b,g,k105

noip2011 提高组 day1 第 1 1 1 题。

TLE的代码1(二维数组)

思路:用二维数组记录地面ground,但空间复杂度o(n²),运行时间超限

#include
#include
#include
using namespace std;
const int MAXN = 1e4 + 10;
int ground[MAXN][MAXN];
int main()
{
	int n, a, b, g, k;
	cin >> n;
	
	//初始化矩阵
	memset(ground, -1, sizeof(ground));
	
	//录入矩阵信息
	for (int i = 1; i <= n; i++)
	{
		cin >> a >> b >> g >> k;
		for (int x = a; x <= a + g; x++)
		{
			for (int y = b; y <= b + k; y++)
			{
				ground[x][y] = i;
			}
		}
	}

    //查找位置点的信息
	int x, y;
	cin >> x >> y;
	cout << ground[x][y] << endl;
}

AC代码

思路:如果不能记录整个矩阵信息的话,那么可以选择记录部分矩阵信息,即记录有地毯覆盖的地面信息。

#include
#include
#include
using namespace std;
int main()
{
	int n;
	vector<int> a,b,g,k;
	cin >> n;

   //用向量组记录有地毯覆盖的点的信息,x,y分开统计记录覆盖的点,可以降低复杂度
   //可利用向量下标判断地毯号
	for (int i = 1; i <= n; i++)
	{
		int x, y, dx, dy;
		cin >> x >> y >> dx >> dy;
		a.push_back(x);
		b.push_back(y);
		g.push_back(dx);
		k.push_back(dy);
	}
    
    //查找位置点的信息
	int x, y;
	cin >> x >> y;
	int num = -1;
	for (int i = 0; i < a.size(); i++)
	{
		if (x >= a[i] && x <= a[i] + g[i] && y >= b[i] && y <= b[i] + k[i])
		{
			num = i + 1;
		}
	}
	cout << num << endl;
	return 0;
}

你可能感兴趣的:(C++基础学习笔记,c++,算法,开发语言)