Investor – A Java Quantitative Trading Library

Investor – A Java Quantitative Trading Library

Published by pschatzmann on 30. May 2018

Introduction

Last year I was busy to build my own project which provides an easy to use functionality to implement and evaluate automatic stock trading strategies. It is implemented in java and therefore can be used in any environment which builds on the JVM.

It provides the following functionality:
– Simple access to stock data
– Declarative formulation of trading strategies
– Evaluation of trading strategies
– Optimization of trading strategies
– Support of portfolio of multiple stocks / trading strategies

At the end it should be possible to easily formulate and evaluate stock strategy and to evaluate the impact of changes on assumptions.

In this document we demonstrates the basic functionality using Scala: We are using JupyterLab with the BeakerX Scala Kernel. The Jupyter source code can be found on github. And finally here is the link to the Javadoc.

Setup

We need to add the java libraries:

%classpath config resolver maven-public http://software.pschatzmann.ch/repository/maven-public/
%classpath add mvn ch.pschatzmann:investor:0.9-SNAPSHOT
%classpath add mvn ch.pschatzmann:jupyter-jdk-extensions:0.0.1-SNAPSHOT

Added new repo: maven-public

Imports

First we define all the imports which are used in this demo:

// our stock evaluation framwork
import ch.pschatzmann.dates._;
import ch.pschatzmann.stocks._;
import ch.pschatzmann.stocks.data.universe._;
import ch.pschatzmann.stocks.input._;
import ch.pschatzmann.stocks.accounting._;
import ch.pschatzmann.stocks.accounting.kpi._;
import ch.pschatzmann.stocks.execution._;
import ch.pschatzmann.stocks.execution.fees._;
import ch.pschatzmann.stocks.execution.price._;
import ch.pschatzmann.stocks.parameters._;
import ch.pschatzmann.stocks.strategy._;
import ch.pschatzmann.stocks.strategy.optimization._;
import ch.pschatzmann.stocks.strategy.allocation._;
import ch.pschatzmann.stocks.strategy.selection._;
import ch.pschatzmann.stocks.integration._;
import ch.pschatzmann.stocks.integration.ChartData.FieldName._;
import ch.pschatzmann.stocks.strategy.OptimizedStrategy.Schedule._;


// java
import java.util.stream.Collectors;
import java.util._;
import java.lang._;
import java.util.function.Consumer;

// ta4j
import org.ta4j.core._;
import org.ta4j.core.analysis._;
import org.ta4j.core.analysis.criteria._;
import org.ta4j.core.indicators._;
import org.ta4j.core.indicators.helpers._;
import org.ta4j.core.trading.rules._;

// jupyter custom displayer
import ch.pschatzmann.display.Displayers
import ch.pschatzmann.dates._
import ch.pschatzmann.stocks._
import ch.pschatzmann.stocks.data.universe._
import ch.pschatzmann.stocks.input._
import ch.pschatzmann.stocks.accounting._
import ch.pschatzmann.stocks.accounting.kpi._
import ch.pschatzmann.stocks.execution._
import ch.pschatzmann.stocks.execution.fees._
import ch.pschatzmann.stocks.execution.price._
import ch.pschatzmann.stocks.parameters._
import ch.pschatzmann.stocks.strategy._
import ch.pschatzmann.stocks.strategy.optimization._
import ch.pschatzmann.stocks.strategy.allocation._
import ch.pschatzmann.stocks.strategy.selection._
import ch.pschatzmann.stocks.integration._
import ch.pschatzmann.stocks.integration.ChartData.FieldName._
import ch.pschatzmann.stocks.strategy.OptimizedStrategy.Schedule._
import java.util.stream...

We register the automatic displayers for charts. We are also not interested in information messages from the log, so we define a higher log level:

Displayers.setup("WARN")

true

Basic Data Structures: Universe, StockID, StockData

A StockID is identifiying a stock by the trading symbol and the exchange.

The Uninverse is a collection of StockIDs. We can use the universe to find stocks or to process a collection relevant stocks.
– QuandlWIKIUniverse
– QuandlSixUniverse
– QuandlEuronextUniverse
– MarketUniverse
– JsonUniverse
– ListUniverse

var universe = new ListUniverse(Arrays.asList(new StockID("AAPL","NASDAQ")));
var values = universe.list();

Displayers.display(values)

ticker exchange
AAPL NASDAQ
var universe = new QuandlSixUniverse();
var values = Context.head(universe.list(),10);

Displayers.display(values)

ticker exchange
ARP290071876CHF SIX
AN8068571086CHF SIX
AT0000652011CHF SIX
AT0000741053CHF SIX
AT0000606306CHF SIX
AT0000676903CHF SIX
AT0000743059CHF SIX
AT0000644505CHF SIX
AT0000720008CHF SIX
AT0000697750CHF SIX

Just as a side note: The API provides java collections. It is possible to convert them to a Scala type – e.q a Seq.

var universe = new IEXUniverse();
var values = Context.head(universe.list(),10);

Displayers.display(values)

ticker exchange
A
AA
AABA
AAC
AADR
AAL
AAMC
AAME
AAN
AAOI
import scala.collection.JavaConverters;

JavaConverters.asScalaBufferConverter(values).asScala.toSeq
[[:A, :AA, :AABA, :AAC, :AADR, :AAL, :AAMC, :AAME, :AAN, :AAOI]]

The StockData is the class which provides the history of stock rates and some stock related KPIs. We need to indicate a Reader which defines the source of the data.

Currently we support
– YahooReader
– QuandlWIKIReader
– QuandlSixReader
– MarketArchiveHttpReader
– AlphaVantageReader
– IEXReader

Here is the example how to retrieve the stock history:

var stockdata = new StockData(new StockID("AAPL", "NASDAQ"), new IEXReader());

Displayers.display(Context.tail(stockdata.getHistory(),10));

index date low high open closing adjustmentFactor volume
1248 2018-05-14 187.86 189.01 188.15 20778772
1249 2018-05-15 185.1 186.78 186.44 23695159
1250 2018-05-16 186 186.07 188.18 19183064
1251 2018-05-17 186.36 188 186.99 17294029
1252 2018-05-18 186.13 187.19 186.31 18297728
1253 2018-05-21 186.9106 188 187.63 18400787
1254 2018-05-22 186.78 188.375 187.16 15240704
1255 2018-05-23 185.76 186.35 188.36 20058415
1256 2018-05-24 186.21 188.77 188.15 23233975
1257 2018-05-25 187.65 188.23 188.58 17460963

Charts

Unfortunatly the BeakerX charting currently does not work in Jupyterlab. Therfore we use JFeeChart http://www.jfree.org/jfreechart/.

Now, we can display a stock chart in just 1 line:

var aapl = new StockData(new StockID("AAPL", "NASDAQ"), new MarketArchiveHttpReader());
new TimeSeriesChart().add(aapl)

Investor – A Java Quantitative Trading Library_第1张图片

Technical Analysis with TA4J

Ta4j is an open source Java library for technical analysis. It provides the basic components for creation, evaluation and execution of trading strategies.

We can use our StockData functionality as data source for TA4J to e.g. to calculate indicators:

var stockData:IStockData = new StockData(new StockID("AAPL", "NASDAQ"), new MarketArchiveHttpReader());
// translate to Ta4j TimeSeries
var series = new Ta4jTimeSeries(stockData, new DateRange(Context.date("2017-01-01"),new Date()));
// Closing Prices
var closePrice:Indicator[Decimal] = new ClosePriceIndicator(series);
// Getting the simple moving average (SMA) of the close price over the last 5 ticks
var shortSma:Indicator[Decimal] = new SMAIndicator(closePrice, 5);
// Getting a longer SMA (e.g. over the 30 last ticks)
var longSma:Indicator[Decimal] = new SMAIndicator(closePrice, 30);

// create chart
var chart = new TimeSeriesChart()
chart.add(shortSma,"shortSma")
chart.add(closePrice,"close")
chart.add(longSma,"longSma")

chart

Investor – A Java Quantitative Trading Library_第2张图片

Trading with TA4J

Here is the complete trading and evaluation example which we took from the TA4J documentation that can be found at
https://github.com/ta4j/ta4j/wiki/Getting%20started.

The example has been converted to Scala:

var stockData = new StockData(new StockID("AAPL", "NASDAQ"), new MarketArchiveHttpReader());
var series = new Ta4jTimeSeries(stockData);
var closePrice = new ClosePriceIndicator(series);

// Getting the simple moving average (SMA) of the close price over the last 5 ticks
var shortSma = new SMAIndicator(closePrice, 5);
// Getting a longer SMA (e.g. over the 30 last ticks)
var longSma = new SMAIndicator(closePrice, 30);

// Buying rules
// We want to buy:
//  - if the 5-ticks SMA crosses over 30-ticks SMA
//  - or if the price goes below a defined price (e.g $800.00)
var buyingRule = new CrossedUpIndicatorRule(shortSma, longSma)
        .or(new CrossedDownIndicatorRule(closePrice, Decimal.valueOf("800")));

// Selling rules
// We want to sell:
//  - if the 5-ticks SMA crosses under 30-ticks SMA
//  - or if if the price looses more than 3%
//  - or if the price earns more than 2%
var sellingRule = new CrossedDownIndicatorRule(shortSma, longSma)
        .or(new StopLossRule(closePrice, Decimal.valueOf("3")))
        .or(new StopGainRule(closePrice, Decimal.valueOf("2")));

var strategy = new BaseStrategy(buyingRule, sellingRule);

// Running our juicy trading strategy...
var manager = new TimeSeriesManager(series);
var tradingRecord = manager.run(strategy);
println("Number of trades for our strategy: " + tradingRecord.getTradeCount());

// Getting the cash flow of the resulting trades
var cashFlow = new CashFlow(series, tradingRecord);

// Getting the profitable trades ratio
var profitTradesRatio = new AverageProfitableTradesCriterion();
println("Profitable trades ratio: " + profitTradesRatio.calculate(series, tradingRecord));

// Getting the reward-risk ratio
var rewardRiskRatio = new RewardRiskRatioCriterion();
println("Reward-risk ratio: " + rewardRiskRatio.calculate(series, tradingRecord));

// Total profit of our strategy
// vs total profit of a buy-and-hold strategy
var vsBuyAndHold = new VersusBuyAndHoldCriterion(new TotalProfitCriterion());
println("Our profit vs buy-and-hold profit: " + vsBuyAndHold.calculate(series, tradingRecord));

"--END--"
Number of trades for our strategy: 218
Profitable trades ratio: 0.536697247706422
Reward-risk ratio: 1.8774625448568232
Our profit vs buy-and-hold profit: 0.0019066141135999938





--END--

So far we have seen how we can use our functionality toghether with TA4J to implement an automatic trading and evaluation platform.

In the next Chapter we demonstrate our own Trading Simulation and Optimization functionality.

Accounts and Paper Trader

The Account class is used to record and evaluate trades. We need to indicate the opening amount, the open date of the account and the Fees Model (IFeesModel).
We can optionally register a generic reader or a ticker specific reader which defines from where the stock information is read.

The requested stock trades are recorded with the addTransaction() method. Positive quantities are purchased, negative quantities are sold.

The paper trader implements the basic trading (simulation) functionality. We can indicate a delay (with setDelay() and the price logic with setPrice(). In our example the trade is executed on the next day with the open rate.

With the execute() method we start the processing which is processing the open unfilled orders.

var stockdata = new StockID("AAPL", "NASDAQ");
var account = new Account("Simulation","USD", 100000.00, Context.date("2015-01-01"), new PerTradeFees(10.0));

account.putReader(new MarketArchiveHttpReader());
account.addTransaction(new Transaction(Context.date("2015-01-04"), stockdata, +100l));
account.addTransaction(new Transaction(Context.date("2015-10-04"), stockdata, -90l));

var trader = new PaperTrader(account);
// configure alternative logic
trader.setDelay(new OneDayDelay());
trader.setPrice(new OpenPrice());
trader.execute();

// display the resulting transactions
Displayers.display(account.getTransactions());

active stockID date quantity requestedPrice filledPrice fees comment id impactOnCash buyOrSell requestedPriceType
true
Key Value
ticker Cash
exchange Account
2015-01-01 0 0 0 0 7217808a-02f5-4204-8c33-0ffb74e1e423 100000 NA CashTransfer
true
Key Value
ticker AAPL
exchange NASDAQ
2015-01-05 100 0 102.5099 10 d8590f3b-7f8c-4795-8eaa-a01e73ce0f91 -10260.9933 Buy Market
true
Key Value
ticker AAPL
exchange NASDAQ
2015-10-05 -90 0 105.3364 10 fd1bd3ec-b5fb-4a86-8521-84e9c20d9d2a 9470.2776 Sell Market

Trading Strategies

The heart of automatic trading are the “trading strategies”. A class which implements ITradingStrategy can be used for automatic trading. A class which implements IOptimizableTradingStrategy can be used for automatic parameter optimization and automatic trading.

The framework comes with the following standard strategies:

TradingStrategyFactory.list()
[CCICorrectionStrategy, GlobalExtremaStrategy, MovingMomentumStrategy, RSI2Strategy, BuyAndHoldStrategy]

The Fitness class will be used to evaluate the strategies. As a result it provides both the input and the calculated KPI ouput parameters and updates the account.

You can use the SimulatedFitness class if you want to avoid the update to the account.

Displayers.display(account.getTransactions().collect(Collectors.toList()))
active stockID date quantity requestedPrice filledPrice fees comment id impactOnCash buyOrSell requestedPriceType
true
Key Value
ticker Cash
exchange Account
2015-01-01 0 0 0 0 7217808a-02f5-4204-8c33-0ffb74e1e423 100000 NA CashTransfer
true
Key Value
ticker AAPL
exchange NASDAQ
2015-01-05 100 0 102.5099 10 d8590f3b-7f8c-4795-8eaa-a01e73ce0f91 -10260.9933 Buy Market
true
Key Value
ticker AAPL
exchange NASDAQ
2015-10-05 -90 0 105.3364 10 fd1bd3ec-b5fb-4a86-8521-84e9c20d9d2a 9470.2776 Sell Market
var account = new Account("Simulation","USD", 100000.00, Context.date("2015-01-01"), new PerTradeFees(10.0));
var stockdata = new StockData(new StockID("AAPL", "NASDAQ"), new MarketArchiveHttpReader());
var strategy = new RSI2Strategy(stockdata);
var trader = new PaperTrader(account);
var state = new Fitness(trader).getFitness(strategy, account.getDateRange());

// print one parameter
println("Return: " + state.result().getValue(KPI.AbsoluteReturn));

// print all parameters
Displayers.display(state.result().getParameters())
Return: 56741.0
Key Value
ReturnPercentAnualized 19
NumberOfTrades 5
SharpeRatio 1
MaxDrawDownPercent 33517
PurchasedValue 92884
ReturnPurcentStdDev 0
RealizedGains -7066
NumberOfBuys 3
TotalFees 50
AbsoluteReturn 56741
MaxDrawDownLowValue 88757
MaxDrawDownNumberOfDays 458
AbsoluteReturnAvaragePerDay 74
ActualValue 156741
MaxDrawDownHighValue 122274
AbsoluteReturnStdDev 1235
UnrealizedGains 63858
ReturnPercent 57
NumberOfTradedStocks 1
Cash 97
NumberOfCashTransfers 1
NumberOfSells 2
Displayers.display(account.getTransactions())
active stockID date quantity requestedPrice filledPrice fees comment id impactOnCash buyOrSell requestedPriceType
true
Key Value
ticker Cash
exchange Account
2015-01-01 0 0 0 0 1af70412-cea9-4c63-a3ad-5e6ba047f31b 100000 NA CashTransfer
true
Key Value
ticker AAPL
exchange NASDAQ
2015-01-12 966 0 103.4187 10 1e16cf8a-81fb-4115-8bff-6e65abc38749 -99912.458 Buy Market
true
Key Value
ticker AAPL
exchange NASDAQ
2015-08-17 -966 0 112.3154 10 5bf75205-f175-4760-9ec9-6a8402bd5219 108486.6756 Sell Market
true
Key Value
ticker AAPL
exchange NASDAQ
2016-04-15 1020 0 106.3323 10 c4543d5d-108e-4383-8088-d723dab52bfd -108468.9442 Buy Market
true
Key Value
ticker AAPL
exchange NASDAQ
2016-05-10 -1020 0 90.979 10 3fbc5afb-00f2-49ca-bce4-364a77cbe0b1 92788.5762 Sell Market
true
Key Value
ticker AAPL
exchange NASDAQ
2016-08-11 878 0 105.6793 10 58710958-a9ac-49eb-861f-9ec8b66d5988 -92796.3972 Buy Market
// create chart for total values
var chart = new TimeSeriesChart();
chart.add(account.getTotalValueHistory(), "Total Value")
chart.add(account.getCashHistoryForAllDates(), "Cash")
chart.add(account.getActualValueHistory(), "Actual Value")
chart.addLabels(account.getTransactions())

chart

Investor – A Java Quantitative Trading Library_第3张图片

In order to get a better understanding of the development of the values over time we can
chart the Acocunt information.

Displayers.display(account.getTransactions())
active stockID date quantity requestedPrice filledPrice fees comment id impactOnCash buyOrSell requestedPriceType
true
Key Value
ticker Cash
exchange Account
2015-01-01 0 0 0 0 1af70412-cea9-4c63-a3ad-5e6ba047f31b 100000 NA CashTransfer
true
Key Value
ticker AAPL
exchange NASDAQ
2015-01-12 966 0 103.4187 10 1e16cf8a-81fb-4115-8bff-6e65abc38749 -99912.458 Buy Market
true
Key Value
ticker AAPL
exchange NASDAQ
2015-08-17 -966 0 112.3154 10 5bf75205-f175-4760-9ec9-6a8402bd5219 108486.6756 Sell Market
true
Key Value
ticker AAPL
exchange NASDAQ
2016-04-15 1020 0 106.3323 10 c4543d5d-108e-4383-8088-d723dab52bfd -108468.9442 Buy Market
true
Key Value
ticker AAPL
exchange NASDAQ
2016-05-10 -1020 0 90.979 10 3fbc5afb-00f2-49ca-bce4-364a77cbe0b1 92788.5762 Sell Market
true
Key Value
ticker AAPL
exchange NASDAQ
2016-08-11 878 0 105.6793 10 58710958-a9ac-49eb-861f-9ec8b66d5988 -92796.3972 Buy Market

Trading Strategies Description

import scala.collection.JavaConversions._

var list = new ArrayList[HashMap[String,String]]()
for (strategy <-  TradingStrategyFactory.list()) {
    var map = new HashMap[String,String]();
    map.put("Name", strategy)
    map.put("Description",TradingStrategyFactory.getStrategyDesciption(strategy))
    list.add(map)
}

Displayers.display(list)
Description Name
Developed by Donald Lambert, the Commodity Channel Index (CCI) is a momentum oscillator that can be used to identify a new trend or warn of extreme conditions. This strategy uses weekly CCI to dictate the trading bias when it surges above +100 or plunges below -100, which are key levels noted by Lambert. Once the trading bias is set, daily CCI is used to generate trading signals when it reaches its extremes.Details can be found in stockcharts

CCICorrectionStrategy
This strategy compares the current price to the global extrema over a week. We ar going long if the close price goes below the minimum price. We are going short if the close price goes above the maximum price. GlobalExtremaStrategy
Many trading strategies are based on a process, not a single signal. This process often involves a series of steps that ultimately lead to a signal. Typically, chartists first establish a trading bias or long-term perspective. Second, chartists wait for pullbacks or bounces that will improve the risk-reward ratio. Third, chartists look for a reversal that indicates a subsequent upturn or downturn in price. The strategy put forth here uses moving average to define the trend, the Stochastic Oscillator to identify corrections within that trend and the MACD-Histogram to signal short-term reversals. It is a complete strategy based on a three step process.

http://stockcharts.com/school/doku.php?id=chart_school:trading_strategies:moving_momentum

MovingMomentumStrategy
Developed by Larry Connors, the 2-period RSI strategy is a mean-reversion trading strategy designed to buy or sell securities after a corrective period. The strategy is rather simple. Connors suggests looking for buying opportunities when 2-period RSI moves below 10, which is considered deeply oversold. Conversely, traders can look for short-selling opportunities when 2-period RSI moves above 90. This is a rather aggressive short-term strategy designed to participate in an ongoing trend. It is not designed to identify major tops or bottoms. Before looking at the details, note that this article is designed to educate chartists on possible strategies. We are not presenting a stand-alone trading strategy that can be used right out of the box. Instead, this article is meant to enhance strategy development and refinement.
See http://stockcharts.com/school/doku.php?id=chart_school:trading_strategies:rsi2.
RSI2Strategy
We buy the title when the account is opened and hold the stock. This strategy can be used as a baseline to compare the other strategies. BuyAndHoldStrategy

Comparing Trading Strategies

Here is a small example which compares the trading strategies for Apple starting from 2015-01-01

import java.util.ArrayList

def calculateResult(account:Account, strategy : IOptimizableTradingStrategy) : java.util.Map[String,Object] = {
    var state = new SimulatedFitness(account).getFitness(strategy, account.getDateRange());
    var result = state.getMap();
    // add strategy name to result
    result.put("Strategy", strategy.getClass().getSimpleName());
    return result;
}

var account = new Account("Simulation","USD", 100000.00, Context.date("2015-01-01"), new PerTradeFees(10.0));
var sd = Context.getStockData("AAPL", "NASDAQ");

var result = new ArrayList[java.util.Map[String,Object]]();
result.add(calculateResult(account, new RSI2Strategy(sd)));
result.add(calculateResult(account, new BuyAndHoldStrategy(sd)));
result.add(calculateResult(account, new CCICorrectionStrategy(sd)));
result.add(calculateResult(account, new GlobalExtremaStrategy(sd)));
result.add(calculateResult(account, new MovingMomentumStrategy(sd)));

Displayers.display(result)
PurchasedValue SharpeRatio RealizedGains UnrealizedGains LongSMAPeriod Cash MaxDrawDownLowValue NumberOfTrades NumberOfTradedStocks EntryLimit RSIPeriod NumberOfCashTransfers AbsoluteReturnAvaragePerDay NumberOfSells MaxDrawDownHighValue ShortSMAPeriod ReturnPercentAnualized AbsoluteReturnStdDev ExitLimit AbsoluteReturn NumberOfBuys ReturnPercent TotalFees MaxDrawDownNumberOfDays ActualValue MaxDrawDownPercent ReturnPurcentStdDev Strategy
92884 1 -7066 63858 200 97 88757 5 1 5 2 1 74 2 122274 5 19 1235 95 56741 3 57 50 458 156741 33517 0 RSI2Strategy
99990 1 0 72368 14 85003 1 1 1 94 0 122201 24 1615 72358 1 72 10 426 172358 37198 0 BuyAndHoldStrategy
79404 1 -20566 48741 47 74745 3 1 1 37 1 102875 9 1106 28145 2 28 30 487 128145 28130 0 CCICorrectionStrategy
139839 1 40279 0 139839 94371 44 1 1 52 22 112952 13 1031 39839 22 40 440 318 139839 18582 0 GlobalExtremaStrategy
105885 0 5925 0 105885 83121 4 1 1 8 2 106331 2 740 5885 2 6 40 331 105885 23210 0 MovingMomentumStrategy

Custom Trading Strategies

Finally we demonstrate how you can implement your custom Strategy. The indicators and trading strategy functionality is based on TA4J https://github.com/ta4j/ta4j.

The simplest and fastest way is to implement a BaseStrategy by extending the CommonTradingStrategy:

import ch.pschatzmann.dates._;
import ch.pschatzmann.stocks._;
import ch.pschatzmann.stocks.accounting._;
import ch.pschatzmann.stocks.integration._;
import ch.pschatzmann.stocks.execution._;
import ch.pschatzmann.stocks.execution.fees._;
import ch.pschatzmann.stocks.strategy._;
import ch.pschatzmann.stocks.strategy.optimization._;
import ch.pschatzmann.stocks.input._;
import ch.pschatzmann.stocks.parameters._;
import org.ta4j.core._;
import org.ta4j.core.analysis._;
import org.ta4j.core.analysis.criteria._;
import org.ta4j.core.indicators._;
import org.ta4j.core.indicators.helpers._;
import org.ta4j.core.trading.rules._;
import ch.pschatzmann.display.Displayers

class DemoStrategy(sd : StockData) extends CommonTradingStrategy (sd){
    // Define BaseStrategy
    def buildStrategy(timeSeries : TimeSeries) : BaseStrategy = {
        val closePrices = new ClosePriceIndicator(timeSeries);
        // Getting the max price over the past week
        val maxPrices = new MaxPriceIndicator(timeSeries);
        val weekMaxPrice = new HighestValueIndicator(maxPrices, 7);
        // Getting the min price over the past week
        val minPrices = new MinPriceIndicator(timeSeries);
        val weekMinPrice = new LowestValueIndicator(minPrices, 7);
        // Going long if the close price goes below the min price
        val downWeek = new MultiplierIndicator(weekMinPrice, Decimal.valueOf(1.004));
        val buyingRule = new UnderIndicatorRule(closePrices, downWeek);
        // Going short if the close price goes above the max price
        val upWeek = new MultiplierIndicator(weekMaxPrice, Decimal.valueOf(0.996));
        val sellingRule = new OverIndicatorRule(closePrices, upWeek);

        return new BaseStrategy(buyingRule, sellingRule);
    }  
}

var apple = new StockData(new StockID("AAPL", "NASDAQ"), new MarketArchiveHttpReader());
var account = new Account("Simulation","USD", 100000.00, Context.date("2015-01-01"), new PerTradeFees(10.0));
var strategy = new DemoStrategy(apple);
var trader = new PaperTrader(account);
var state = new Fitness(trader).getFitness(strategy, account.getDateRange());

//println("Return: "+state.result().getValue(KPI.AbsoluteReturn));
Displayers.display(state.getMap());

Key Value
AbsoluteReturnStdDev 1031
PurchasedValue 139839
SharpeRatio 1
RealizedGains 40279
AbsoluteReturn 39839
UnrealizedGains 0
NumberOfBuys 22
Cash 139839
ReturnPercent 40
MaxDrawDownLowValue 94371
TotalFees 440
MaxDrawDownNumberOfDays 318
NumberOfTrades 44
NumberOfTradedStocks 1
NumberOfCashTransfers 1
ActualValue 139839
MaxDrawDownPercent 18582
ReturnPurcentStdDev 0
AbsoluteReturnAvaragePerDay 52
NumberOfSells 22
MaxDrawDownHighValue 112952
ReturnPercentAnualized 13

An alternaive approach is to implement the interface directly:

import ch.pschatzmann.dates._;
import ch.pschatzmann.stocks._;
import ch.pschatzmann.stocks.accounting._;
import ch.pschatzmann.stocks.integration._;
import ch.pschatzmann.stocks.execution._;
import ch.pschatzmann.stocks.execution.fees._;
import ch.pschatzmann.stocks.strategy._;
import ch.pschatzmann.stocks.strategy.optimization._;
import ch.pschatzmann.stocks.input._;
import ch.pschatzmann.stocks.parameters._;
import org.ta4j.core._;
import org.ta4j.core.analysis._;
import org.ta4j.core.analysis.criteria._;
import org.ta4j.core.indicators._;
import org.ta4j.core.indicators.helpers._;
import org.ta4j.core.trading.rules._;
import ch.pschatzmann.display.Displayers

/**
 * Strategy implemented in Scala 
 */
class DemoStrategy extends ITradingStrategy {
    var state = new State();
    val stockdata = new StockData(new StockID("AAPL", "NASDAQ"), new MarketArchiveHttpReader());

    def getStrategy():Strategy = {
        var timeSeries = new Ta4jTimeSeries(getStockData());
        val closePrices = new ClosePriceIndicator(timeSeries);
        // Getting the max price over the past week
        val maxPrices = new MaxPriceIndicator(timeSeries);
        val weekMaxPrice = new HighestValueIndicator(maxPrices, 7);
        // Getting the min price over the past week
        val minPrices = new MinPriceIndicator(timeSeries);
        val weekMinPrice = new LowestValueIndicator(minPrices, 7);
        // Going long if the close price goes below the min price
        val downWeek = new MultiplierIndicator(weekMinPrice, Decimal.valueOf(1.004));
        val buyingRule = new UnderIndicatorRule(closePrices, downWeek);
        // Going short if the close price goes above the max price
        val upWeek = new MultiplierIndicator(weekMaxPrice, Decimal.valueOf(0.996));
        val sellingRule = new OverIndicatorRule(closePrices, upWeek);

        return new BaseStrategy(buyingRule, sellingRule);
    }

    def getStockData():StockData = {
        return stockdata;
    }

    def getName():String = {
        return "DemoStrategy";
    }

    def getDescription():String = {
        return "Demo strategy implemented in scala";
    }

    def getParameters():State = {
        return state;
    }

    def reset() {}

}

var account = new Account("Simulation","USD", 100000.00, Context.date("2015-01-01"), new PerTradeFees(10.0));
var strategy = new DemoStrategy();
var trader = new PaperTrader(account);
var state = new Fitness(trader).getFitness(strategy,account.getDateRange());

//println("Return: "+state.result().getValue(KPI.AbsoluteReturn));
Displayers.display(state.getMap());

Key Value
AbsoluteReturnStdDev 1031
PurchasedValue 139839
SharpeRatio 1
RealizedGains 40279
AbsoluteReturn 39839
UnrealizedGains 0
NumberOfBuys 22
Cash 139839
ReturnPercent 40
MaxDrawDownLowValue 94371
TotalFees 440
MaxDrawDownNumberOfDays 318
NumberOfTrades 44
NumberOfTradedStocks 1
NumberOfCashTransfers 1
ActualValue 139839
MaxDrawDownPercent 18582
ReturnPurcentStdDev 0
AbsoluteReturnAvaragePerDay 52
NumberOfSells 22
MaxDrawDownHighValue 112952
ReturnPercentAnualized 13

see also:

  1. Deeplearning4j – Iris Classification Example
  2. Deeplearning4j – Recurrent Neural Networks (RNN)
  3. Arduino Raspberry Pico – Looking Under the Hood
  4. Multiple Wordpess Instances in Docker with NGINX & https
  5. Docker and Treafik – A Comprehensive Tutorial
  6. Docker + WordPress = Danger
  7. Microcontrollers and MIDI – Using the Bluetooth Serial Interface
  8. Identity Management and Authentication for Java Webservices and Javascript GUIs
  9. WooCommerce und Java REST Webhooks
  10. AI Thinker AudioKit – A simple Synthesizer with STK

你可能感兴趣的:(java)