MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码

RBF(径向基神经网络)

MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第1张图片 MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第2张图片 MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第3张图片 MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第4张图片

GRNN广义神经网络

MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第5张图片 MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第6张图片

PNN概率神经网络

MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第7张图片 MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第8张图片

RBF算例实现(回归)

数据集

% 1. 导入数据
load spectra_data.mat
NIR输入,octane输出
MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第9张图片

%% I. 清空环境变量
clear all
clc

%% II. 训练集/测试集产生
%%
% 1. 导入数据
load spectra_data.mat

%%
% 2. 随机产生训练集和测试集
temp = randperm(size(NIR,1));
% 训练集——50个样本
P_train = NIR(temp(1:50),:)';
T_train = octane(temp(1:50),:)';
% 测试集——10个样本
P_test = NIR(temp(51:end),:)';
T_test = octane(temp(51:end),:)';
N = size(P_test,2);

%% III. RBF神经网络创建及仿真测试
%%
% 1. 创建网络
net = newrbe(P_train,T_train,30);%30为speend

%%
% 2. 仿真测试
T_sim = sim(net,P_test);

%% IV. 性能评价
%%
% 1. 相对误差error
error = abs(T_sim - T_test)./T_test;

%%
% 2. 决定系数R^2
R2 = (N * sum(T_sim .* T_test) - sum(T_sim) * sum(T_test))^2 / ((N * sum((T_sim).^2) - (sum(T_sim))^2) * (N * sum((T_test).^2) - (sum(T_test))^2)); 

%%
% 3. 结果对比
result = [T_test' T_sim' error']

%% V. 绘图
figure
plot(1:N,T_test,'b:*',1:N,T_sim,'r-o')
legend('真实值','预测值')
xlabel('预测样本')
ylabel('辛烷值')
string = {'测试集辛烷值含量预测结果对比';['R^2=' num2str(R2)]};
title(string)


MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第10张图片 MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第11张图片

GRNN和PNN神经网络(分类)

数据集:经典案例鸢尾花分类
MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第12张图片

feature有4维数据:花萼长度,花萼宽度,花瓣长度,花瓣宽度

classes花的种类
‘setosa’, ‘versicolor’, ‘virginica’

%% I. 清空环境变量
clear all
clc

%% II. 训练集/测试集产生
%%
% 1. 导入数据
load iris_data.mat

%%
% 2 随机产生训练集和测试集
P_train = [];
T_train = [];
P_test = [];
T_test = [];
for i = 1:3
    temp_input = features((i-1)*50+1:i*50,:);
    temp_output = classes((i-1)*50+1:i*50,:);
    n = randperm(50);
    % 训练集——120个样本
    P_train = [P_train temp_input(n(1:40),:)'];
    T_train = [T_train temp_output(n(1:40),:)'];
    % 测试集——30个样本
    P_test = [P_test temp_input(n(41:50),:)'];
    T_test = [T_test temp_output(n(41:50),:)'];
end

%% III. 模型建立 
result_grnn = [];
result_pnn = [];
time_grnn = [];
time_pnn = [];
for i = 1:4
    for j = i:4
        p_train = P_train(i:j,:);
        p_test = P_test(i:j,:);
       %% 
        % 1. GRNN创建及仿真测试
        t = cputime;
        % 创建网络
        net_grnn = newgrnn(p_train,T_train);
        % 仿真测试
        t_sim_grnn = sim(net_grnn,p_test);
        T_sim_grnn = round(t_sim_grnn);%取整操作,因为是分类,目标是整数
        t = cputime - t;
        time_grnn = [time_grnn t];
        result_grnn = [result_grnn T_sim_grnn'];
       %%
        % 2. PNN创建及仿真测试
        t = cputime;
        Tc_train = ind2vec(T_train);
        % 创建网络
        net_pnn = newpnn(p_train,Tc_train);
        % 仿真测试
        Tc_test = ind2vec(T_test);
        t_sim_pnn = sim(net_pnn,p_test);
        T_sim_pnn = vec2ind(t_sim_pnn);
        t = cputime - t;
        time_pnn = [time_pnn t];
        result_pnn = [result_pnn T_sim_pnn'];
    end
end

%% IV. 性能评价
%%
% 1. 正确率accuracy
accuracy_grnn = [];
accuracy_pnn = [];
time = [];
for i = 1:10
    accuracy_1 = length(find(result_grnn(:,i) == T_test'))/length(T_test);
    accuracy_2 = length(find(result_pnn(:,i) == T_test'))/length(T_test);
    accuracy_grnn = [accuracy_grnn accuracy_1];
    accuracy_pnn = [accuracy_pnn accuracy_2];
end

%%
% 2. 结果对比
result = [T_test' result_grnn result_pnn]
accuracy = [accuracy_grnn;accuracy_pnn]
time = [time_grnn;time_pnn]

%% V. 绘图
figure(1)
plot(1:30,T_test,'bo',1:30,result_grnn(:,4),'r-*',1:30,result_pnn(:,4),'k:^')
grid on
xlabel('测试集样本编号')
ylabel('测试集样本类别')
string = {'测试集预测结果对比(GRNN vs PNN)';['正确率:' num2str(accuracy_grnn(4)*100) '%(GRNN) vs ' num2str(accuracy_pnn(4)*100) '%(PNN)']};
title(string)
legend('真实值','GRNN预测值','PNN预测值')
figure(2)
plot(1:10,accuracy(1,:),'r-*',1:10,accuracy(2,:),'b:o')
grid on
xlabel('模型编号')
ylabel('测试集正确率')
title('10个模型的测试集正确率对比(GRNN vs PNN)')
legend('GRNN','PNN')
figure(3)
plot(1:10,time(1,:),'r-*',1:10,time(2,:),'b:o')
grid on
xlabel('模型编号')
ylabel('运行时间(s)')
title('10个模型的运行时间对比(GRNN vs PNN)')
legend('GRNN','PNN')

MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第13张图片 MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第14张图片 MATLAB机器学习系列-5 RBF、GRNN和PNN神经网络原理及其例子代码_第15张图片

代码解析:
因为花有三种,所以需要分段划分

for i = 1:3
    temp_input = features((i-1)*50+1:i*50,:);
    temp_output = classes((i-1)*50+1:i*50,:);
    n = randperm(50);
    % 训练集——120个样本
    P_train = [P_train temp_input(n(1:40),:)'];
    T_train = [T_train temp_output(n(1:40),:)'];
    % 测试集——30个样本
    P_test = [P_test temp_input(n(41:50),:)'];
    T_test = [T_test temp_output(n(41:50),:)'];
end

因为花有四个特征,我们将两两特征组合

for i = 1:4
    for j = i:4
     p_train = P_train(i:j,:);
     p_test = P_test(i:j,:);
    

代码和数据百度云

链接:https://pan.baidu.com/s/1Z1txLCFJ_Iif_skcb57PiQ 
提取码:yn6c 
复制这段内容后打开百度网盘手机App,操作更方便哦

在这里插入图片描述
作者:电气工程计算机萌新:余登武
在这里插入图片描述

你可能感兴趣的:(C++和MATLAB系列,matlab)