放弃治疗了,换了一篇新的安装博客:http://wangjieqiang.com/2017/12/04/Ubuntu16-04%E5%AE%89%E8%A3%85Caffe-CPU-only/
这篇博客真的牛逼,一点错误都没发生!
=============分界线==================================================
以下是之前参照博客https://blog.csdn.net/whaxln/article/details/80876953安装时出现的错误:(也感谢这篇博客,有很多有用的东西)
错误一:
fatal error: hdf5.h: No such file or directory
compilation terminated.
Makefile:592: recipe for target '.build_release/src/caffe/solvers/sgd_solver.o' failed
make: *** [.build_release/src/caffe/solvers/sgd_solver.o] Error 1
解决:
进入到Makefile.config,找到并修改如下两项:
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial /usr/lib/x86_64-linux-gnu/
进入到Makefile,找到并修改:
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial
参考:https://blog.csdn.net/whaxln/article/details/80876953
https://blog.csdn.net/qq_38451119/article/details/81383266
https://www.jianshu.com/p/16deb35077a0
错误二:
collect2: error: ld returned 1 exit status
Makefile:593: recipe for target '.build_release/lib/libcaffe.so.1.0.0' failed
make: *** [.build_release/lib/libcaffe.so.1.0.0] Error 1
解决:
看了很多东西,也不知道时哪个起了作用:
首先尝试:
#打开.bashrc:
sudo vim ~/.bashrc
#在最后一行添加如下命令:
export PYTHONPATH=/home/xxx(你的caffe所在的路径)/caffe/python:$PYTHONPATH
#保存,退出
#运行如下命令激活:
source ~/.bashrc
另外:
https://blog.csdn.net/jicong44/article/details/80334663 (看其中的错误二)
#在 Makefile.config 中,加入下一句
LINKFLAGS := -Wl,-rpath,$(HOME)/anaconda2/lib
http://www.imooc.com/article/265330 (最后一个错误)
https://segmentfault.com/q/1010000018942507
apt install libboost-python-dev
https://www.cnblogs.com/rainsoul/p/8243385.html (翻到最后)
#在Makefile文件内进行如下的添加:
ifeq ($(USE_OPENCV), 1)
LIBRARIES += opencv_core opencv_imgproc opencv_videoio
ifeq ($(OPENCV_VERSION), 3)
LIBRARIES += opencv_imgcodecs opencv_videoio
endif
endif
LIBRARIES += glog gflags protobuf boost_system boost_filesystem boost_regex m hdf5_hl hdf5
#相应的Makefile.config中需要注意的地方:
INCLUDE_DIRS := /home/public/software_install/protobuf-3.1.0/include $(PYTHON_INCLUDE) /usr/local/include /home/public/weizhang/opencv-3.4.5/build/install/include /usr/include/hdf5/serial
LIBRARY_DIRS := /home/public/software_install/protobuf-3.1.0/lib $(PYTHON_LIB) /usr/local/lib /usr/lib /home/public/weizhang/opencv-3.4.5/build/install/lib
https://blog.csdn.net/xunan003/article/details/79130493
#在MakeFile文件中
CUDA_LIB_DIR :=
# add /lib64 only if it exists
ifneq ("$(wildcard $(CUDA_DIR)/lib64)","")
CUDA_LIB_DIR += $(CUDA_DIR)/lib64
endif
CUDA_LIB_DIR += $(CUDA_DIR)/lib
INCLUDE_DIRS += $(BUILD_INCLUDE_DIR) ./src ./include
ifneq ($(CPU_ONLY), 1)
INCLUDE_DIRS += $(CUDA_INCLUDE_DIR)
LIBRARY_DIRS += $(CUDA_LIB_DIR)
LIBRARIES := cudart cublas curand
endif
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5
#在最后hdl5后面添加opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs即可,变为
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5 opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs
https://my.oschina.net/u/2480851/blog/1606956 (贴出了博主的Makefile.config文件如下)
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
#因为使用的是cpu模式,所以要放开
CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
#因为使用了anaconda所以要配置anaconda的地址,如果不配置则会出现找不到*.h的情况
ANACONDA_HOME := $(HOME)/anaconda2
#使用anaconda的头文件
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
#使用anaconda的库
PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
另外还有:https://www.cnblogs.com/empty16/p/4828476.html
错误三:
collect2: error: ld returned 1 exit status
Makefile:646: recipe for target '.build_release/tools/upgrade_net_proto_text.bin' failed
make: *** [.build_release/tools/upgrade_net_proto_text.bin] Error 1
解决:
在MakeFile文件中,有如下一段代码:
CUDA_LIB_DIR :=
# add
ifneq ("$(wildcard $(CUDA_DIR)/lib64)","")
CUDA_LIB_DIR += $(CUDA_DIR)/lib64
endif
CUDA_LIB_DIR += $(CUDA_DIR)/lib
INCLUDE_DIRS += $(BUILD_INCLUDE_DIR) ./src ./include
ifneq ($(CPU_ONLY), 1)
INCLUDE_DIRS += $(CUDA_INCLUDE_DIR)
LIBRARY_DIRS += $(CUDA_LIB_DIR)
LIBRARIES := cudart cublas curand
endif
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5
在最后hdl5后面添加opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs即可,变为
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5 opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs
然后重新编译。
-----------------------------转自:https://blog.csdn.net/xunan003/article/details/79130493
然后在make test时又有错误了,是在解决不了了……换一篇安装博客看(见本文开头)