要使用OpenCV DNN模块部署ONNX模型,你可以按照以下步骤实现代码:
import cv2
import numpy as np
model_path = 'path_to_model.onnx' # 替换为ONNX模型文件的路径
class_labels = 'path_to_class_labels.txt' # 替换为与模型相对应的类别标签文件路径
# 加载类别标签
classes = []
with open(class_labels, 'r') as f:
classes = [line.strip() for line in f.readlines()]
# 加载模型
net = cv2.dnn.readNetFromONNX(model_path)
image_path = 'path_to_image.jpg' # 替换为你要测试的图像路径
# 加载图像
image = cv2.imread(image_path)
# 将图像转换为blob格式
blob = cv2.dnn.blobFromImage(image, size=(224, 224), mean=(0, 0, 0), swapRB=True, crop=False)
# 设置输入blob
net.setInput(blob)
# 进行推断
detections = net.forward()
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > confidence_threshold: # 设置置信度阈值
class_id = int(detections[0, 0, i, 1])
label = classes[class_id]
box = detections[0, 0, i, 3:7] * np.array([image.shape[1], image.shape[0], image.shape[1], image.shape[0]])
(x, y, w, h) = box.astype("int")
cv2.rectangle(image, (x, y), (w, h), (0, 255, 0), 2)
text = f'{label}: {confidence:.2f}'
cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 显示结果图像
cv2.imshow("Output", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
在上述代码中,我们使用置信度阈值来过滤预测的边界框,并绘制边界框和类别标签,并显示结果图像。