深度学习 二:COVID 19 Cases Prediction (Regression)

Deep Learning

  • 1. 回归算法思路
  • 2. 代码
    • 2.1 基础操作
    • 2.2 定义相关函数
      • 2.3.1 定义图像绘制函数
      • 2.3.2 数据集加载及预处理
      • 2.3.3 构造数据加载器
      • 2.3.4 构建前馈神经网络(Feedforward Neural Network)模型
      • 2.3.5 神经网络的训练过程
      • 2.3.6 模型评估
      • 2.3.7 模型测试
      • 2.3.8 模型初始化
    • 2.3 模型运行

1. 回归算法思路

基于3层神经网络的回归优化

2. 代码

2.1 基础操作

切换文件路径,并创建新的文件夹:

%cd /content/drive/MyDrive
#change directory to google drive
#!mkdir ML2023
#make a directory named ML2023
%cd ./ML2023
#change directory to ML2023

/content/drive/MyDrive
/content/drive/MyDrive/ML2023

查看当前路径下的文件:

!ls

covid.test.csv covid.train.csv models

显示当前文件路径:

!pwd #output the current directory

/content/drive/MyDrive/ML2023

文件下载:

# Download Data
tr_path = 'covid.train.csv'  # path to training data
tt_path = 'covid.test.csv'   # path to testing data

!gdown --id '19CCyCgJrUxtvgZF53vnctJiOJ23T5mqF' --output covid.train.csv
!gdown --id '1CE240jLm2npU-tdz81-oVKEF3T2yfT1O' --output covid.test.csv

Downloading…
From: https://drive.google.com/uc?id=19CCyCgJrUxtvgZF53vnctJiOJ23T5mqF
To: /content/covid.train.csv
100% 2.00M/2.00M [00:00<00:00, 31.7MB/s]
Downloading…
From: https://drive.google.com/uc?id=1CE240jLm2npU-tdz81-oVKEF3T2yfT1O
To: /content/covid.test.csv
100% 651k/651k [00:00<00:00, 10.2MB/s]

导入所需要的相关包:

# Import Some Packages
# PyTorch
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# For data preprocess
import numpy as np
import csv
import os

# For plotting
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure

# For feature selection
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_regression

2.2 定义相关函数

2.3.1 定义图像绘制函数

def get_device():
    ''' Get device (if GPU is available, use GPU) '''
    return 'cuda' if torch.cuda.is_available() else 'cpu'

def plot_learning_curve(loss_record, title=''):
    ''' Plot learning curve of your DNN (train & dev loss) dev:development'''
    total_steps = len(loss_record['train']) #
    x_1 = range(total_steps)
    figure(figsize=(6, 4))
    plt.plot(x_1, loss_record['train'], c='tab:red', label='train')
    if len(loss_record['dev'])!=0:
        x_2 = x_1[::len(loss_record['train']) // len(loss_record['dev'])] # 计算步长,保持训练集和开发集步长一致
        plt.plot(x_2, loss_record['dev'], c='tab:cyan', label='dev')
    plt.ylim(0.0, 20.0) # 设置纵坐标的范围,将其限制在0.0到20.0之间
    plt.xlabel('Training steps')
    plt.ylabel('MSE loss') # RMSE?
    plt.title('Learning curve of {}'.format(title))
    plt.legend()
    plt.show()


# 绘制预测结果的散点图
def plot_pred(dv_set, model, device, lim=35., preds=None, targets=None):
  # dv_set:开发集(或验证集)的数据集,包含输入特征和实际目标值。
  # model:训练好的深度神经网络模型,用于进行预测。
  # device:指定模型在哪个设备上运行,通常是CPU或GPU。
  # lim:横纵坐标的限制范围,默认为35。
  # preds:模型的预测值(可选参数),如果未提供,则会重新计算。
  # targets:实际目标值(可选参数),如果未提供,则会重新获取
    ''' Plot prediction of your DNN '''
    if preds is None or targets is None:
        model.eval()
        preds, targets = [], []
        for x, y in dv_set: # x是输入特征,y是实际目标值
            x, y = x.to(device), y.to(device)
            with torch.no_grad():
                pred = model(x)
                preds.append(pred.detach().cpu())
                targets.append(y.detach().cpu())
        preds = torch.cat(preds, dim=0).numpy()
        targets = torch.cat(targets, dim=0).numpy()

    figure(figsize=(5, 5))
    plt.scatter(targets, preds, c='r', alpha=0.5)
    plt.plot([-0.2, lim], [-0.2, lim], c='b')
    plt.xlim(-0.2, lim)
    plt.ylim(-0.2, lim)
    plt.xlabel('ground truth value')
    plt.ylabel('predicted value')
    plt.title('Ground Truth v.s. Prediction')
    plt.show()

2.3.2 数据集加载及预处理

class COVID19Dataset(Dataset):
    ''' Dataset for loading and preprocessing the COVID19 dataset '''
    # target_only:一个布尔值,表示是否仅使用目标特征(在这里是最后一列)
    # 如果target_only为True,则只选择目标特征,否则选择一组特定的特征
    def __init__(self,
           path,
           mode='train',
           target_only=False):
        self.mode = mode

        # Read data into numpy arrays
        with open(path, 'r') as fp:
            data = list(csv.reader(fp))
            data = np.array(data[1:])[:, 1:].astype(float) # 切片操作去掉第1列和行


        if not target_only:
            feats = list(range(93)) # 一共94个特征,但是需要除去最后一个特征,最后一个特征是用来预测的
        else:
            # TODO: Using 40 states & 2 tested_positive features (indices = 57 & 75)!!!
            # 使用硬编码
            feats = [40, 41, 42, 43, 57, 58, 59, 60, 61, 75, 76, 77, 78, 79] # sklean mutual info


        if mode == 'test':
            # Testing data
            # data: 893 x 93 (40 states + day 1 (18) + day 2 (18) + day 3 (17))
            data = data[:, feats]
            self.data = torch.FloatTensor(data)
        else:
            # Training data (train/dev sets)
            # data: 2700 x 94 (40 states + day 1 (18) + day 2 (18) + day 3 (18))
            target = data[:, -1]
            data = data[:, feats]
            
            # 整个train+dev一起mean/std
            self.mean = torch.FloatTensor(data).mean(dim=0, keepdim=True) 
            # 计算张量中每列的均值
            # keepdim=True保持结果的维度与输入张量相同,结果将仍然是一个包含均值的张量,但它将具有与每列相同的维度
            self.std = torch.FloatTensor(data).std(dim=0, keepdim=True)


            # Splitting training data into train & dev sets
            if mode == 'train':
                indices = [i for i in range(len(data)) if i % 5 != 0]
            elif mode == 'dev':
                indices = [i for i in range(len(data)) if i % 5 == 0]


            # Convert data into PyTorch tensors
            self.data = torch.FloatTensor(data[indices])
            self.target = torch.FloatTensor(target[indices])


        self.dim = self.data.shape[1] # 获取数据集self.data的列数,也就是特征的数量

        print('Finished reading the {} set of COVID19 Dataset ({} samples found, each dim = {})'
              .format(mode, len(self.data), self.dim))

    # All subclasses should overwrite __getitem__, 
    # supporting fetching a data sample for a given key. 
    def __getitem__(self, index):
        # Returns one sample at a time
        if self.mode in ['train', 'dev']:
            # For training
            return self.data[index], self.target[index]
        else:
            # For testing (no target)
            return self.data[index]

    def __len__(self):
        # Returns the size of the dataset
        return len(self.data)

    def normalization(self, mean=None, std=None):
        # Normalize features (you may remove this part to see what will happen)
        # The mean and standard variance of training data will be reused to normalize testing data.
        if self.mode == 'train' or self.mode =='dev':
            mean = self.mean
            std = self.std
            self.data =  (self.data-mean) / std
        else:
            self.data =  (self.data-mean) / std

        return mean, std
        

Z-Score 标准化(标准差标准化): 将数据缩放到均值为0,标准差为1的标准正态分布

  • 计算特征的均值(mean):
    μ = 1 N ∑ i = 1 N x i \mu = \frac{1}{N} \sum_{i=1}^{N} x_i μ=N1i=1Nxi

  • 计算特征的标准差(standard deviation):
    σ = 1 N ∑ i = 1 N ( x i − μ ) 2 \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} σ=N1i=1N(xiμ)2

  • 对每个数据点 x i x_i xi,应用以下标准化公式:
    z i = x i − μ σ z_i = \frac{x_i - \mu}{\sigma} zi=σxiμ

  • 数据的均值为0,即标准化后的数据集的均值接近于0。

  • 数据的标准差为1,即标准化后的数据集的标准差接近于1。

  • 数据的分布形状不会改变,只是尺度和位置发生了变化。
    Z-Score 标准化适用于许多统计和机器学习算法,特别是对于需要计算距离或涉及梯度下降等数值计算的算法。通过标准化,可以确保不同特征的尺度不会对模型的训练产生不适当的影响,帮助模型更快地收敛并提高性能。

Min-Max 标准化(最小-最大值缩放):

  • 计算特征的最小值: x min = min ⁡ ( x 1 , x 2 , … , x N ) x_{\text{min}} = \min(x_1, x_2, \ldots, x_N) xmin=min(x1,x2,,xN)

  • 计算特征的最大值: x max = max ⁡ ( x 1 , x 2 , … , x N ) x_{\text{max}} = \max(x_1, x_2, \ldots, x_N) xmax=max(x1,x2,,xN)

  • 对每个数据点 x i x_i xi,应用以下标准化公式:
    x i ′ = x i − x min x max − x min x_i' = \frac{x_i - x_{\text{min}}}{x_{\text{max}}- x_{\text{min}}} xi=xmaxxminxixmin

  • σ \sigma σ 表示标准差。

  • N N N 表示数据点的总数。

  • x i x_i xi 表示数据集中的第 i 个数据点。

  • μ \mu μ 表示数据集的均值(平均值),计算方式为: μ = 1 N ∑ i = 1 N x i \mu = \frac{1}{N} \sum_{i=1}^{N} x_i μ=N1i=1Nxi

2.3.3 构造数据加载器

构造数据加载器,用于训练、验证或测试机器学习模型。

# 定义函数可接受多个参数,包括数据文件路径path、数据集模式mode、批量大小batch_size、并行工作数n_jobs、
# 是否仅使用目标数据target_only以及均值和标准差的参数。
def prep_dataloader(path, mode, batch_size, n_jobs=0, target_only=False, mean=None, std=None):
    ''' Generates a dataset, then is put into a dataloader. '''
    # Construct dataset
    dataset = COVID19Dataset(path, mode=mode, target_only=target_only) 
    mean, std = dataset.normalization(mean, std)
    # 创建数据加载器对象:将数据集划分成小批量,并提供批量数据以供模型训练
    dataloader = DataLoader(
        dataset, batch_size,
        shuffle=(mode == 'train'),     # shuffle为一个布尔值,指示是否在每个周期(epoch)之前随机打乱数据。
                           # 通常在训练模型时设置为True,确保每个周期中的样本顺序不同。
        drop_last=False,
        num_workers=n_jobs, pin_memory=True)              
    return dataloader, mean, std

2.3.4 构建前馈神经网络(Feedforward Neural Network)模型

class NeuralNet(nn.Module):
    ''' A simple fully-connected deep neural network '''
    def __init__(self, input_dim):
        super(NeuralNet, self).__init__()

        # Define neural network here
        # TODO: How to modify this model to achieve better performance?
        # 定义了神经网络的结构,包括输入层、隐藏层和输出层。
        self.net = nn.Sequential(
            nn.Linear(input_dim, 64),
            nn.ReLU(),
            nn.Linear(64, 16),
            nn.ReLU(),
            nn.Linear(16,8),
            nn.ReLU(),
            nn.Linear(8,4),
            nn.ReLU(),
            nn.Linear(4,1) # 单个输出神经元的线性层,用于回归任务
        )
        # Mean squared error loss
        # reduction='mean':损失值会被平均计算
        self.criterion = nn.MSELoss(reduction='mean') 

    def forward(self, x):
        ''' Given input of size (batch_size x input_dim), compute output of the network '''
        return self.net(x).squeeze(1)

    def cal_loss(self, pred, target, l1_lambda):
      # target:真实的目标值
      # l1_lambda:L1正则化的超参数,用于控制正则化的强度
        ''' Calculate loss '''
        # TODO: you may implement L2 regularization here
        loss = self.criterion(pred, target)

        # L1 regularization
        l1_reg = torch.tensor(0.).to(device)
        for param in model.parameters():
            l1_reg += torch.sum(torch.abs(param))
        loss += l1_lambda * l1_reg

        return loss

2.3.5 神经网络的训练过程

  • 设置训练超参数和优化器: 代码从配置文件中获取了训练超参数,包括最大的训练周期数(n_epochs)、优化器类型(optimizer)、以及优化器的超参数(optim_hparas)。然后,通过 PyTorch 中的 getattr 函数创建了相应类型的优化器(如 Adam、SGD 等)。
  • 初始化记录器和计数器: 代码初始化了一些变量,包括损失记录器 loss_record,用于记录每个训练周期的训练和开发(验证)集损失,以及用于早停(Early Stopping)的计数器 early_stop_cnt。
  • 开始训练循环: 代码进入了一个训练循环,该循环在最大训练周期数内运行,或者在出现早停情况下提前结束训练。
  • 模型训练: 在每个训练周期内,代码设置模型为训练模式(model.train()),然后迭代训练数据集中的每个批次。
  • 验证集评估: 每个训练周期结束后,代码使用验证集(开发集)对模型进行评估,计算验证集上的均方误差。如果验证集上的均方误差小于之前的最小值(min_mse),则保存模型参数,并重置早停计数器 early_stop_cnt。这有助于防止过拟合,并在性能改善时保存模型。
  • 早停策略: 如果连续 early_stop 个训练周期内都没有性能改善(验证集损失不再降低),训练过程将提前结束。
  • 训练结束: 训练结束后,代码打印出训练周期数,然后返回最小的验证集均方误差和损失记录器 loss_record。
def train(tr_set, dv_set, model, config, device):
    ''' DNN training '''

    n_epochs = config['n_epochs']  # Maximum number of epochs

    # Setup optimizer
    optimizer = getattr(torch.optim, config['optimizer'])(
        model.parameters(), **config['optim_hparas'])

    min_mse = 1000.
    loss_record = {'train': [], 'dev': []}      # for recording training loss
    early_stop_cnt = 0
    epoch = 0
    while epoch < n_epochs:
        model.train()                           # set model to training mode
        for x, y in tr_set:                     # iterate through the dataloader
            optimizer.zero_grad()               # set gradient to zero
            x, y = x.to(device), y.to(device)   # move data to device (cpu/cuda)
            pred = model(x)                     # forward pass (compute output)
            mse_loss = model.cal_loss(pred, y, config['l1_lambda'])  # compute loss
            mse_loss.backward()                 # compute gradient (backpropagation)
            optimizer.step()                    # update model with optimizer
            loss_record['train'].append(mse_loss.detach().cpu().item())


        # After each epoch, test your model on the validation (development) set.
        dev_mse = dev(dv_set, model, device)
        if dev_mse < min_mse:
            # Save model if your model improved
            min_mse = dev_mse
            print('Saving model (epoch = {:4d}, val_loss = {:.4f})'
                .format(epoch + 1, min_mse))
            torch.save(model.state_dict(), config['save_path'])  # Save model to specified path
            early_stop_cnt = 0
        else:
            early_stop_cnt += 1

        epoch += 1
        loss_record['dev'].append(dev_mse)
        if early_stop_cnt > config['early_stop']:
            # Stop training if your model stops improving for "config['early_stop']" epochs.
            break

    print('Finished training after {} epochs'.format(epoch))
    return min_mse, loss_record

2.3.6 模型评估

def dev(dv_set, model, device):
    model.eval()                                # set model to evalutation mode
    total_loss = 0
    for x, y in dv_set:                         # iterate through the dataloader
        x, y = x.to(device), y.to(device)       # move data to device (cpu/cuda)
        with torch.no_grad():                   # disable gradient calculation
            pred = model(x)                     # forward pass (compute output)
            mse_loss = model.cal_loss(pred, y, config['l1_lambda'])  # compute loss
        total_loss += mse_loss.detach().cpu().item() * len(x)  # accumulate loss
    total_loss = total_loss / len(dv_set.dataset)              # compute averaged loss

    return total_loss

2.3.7 模型测试

def test(tt_set, model, device):
    model.eval()                                # set model to evalutation mode
    preds = []
    for x in tt_set:                            # iterate through the dataloader
        x = x.to(device)                        # move data to device (cpu/cuda)
        with torch.no_grad():                   # disable gradient calculation
            pred = model(x)                     # forward pass (compute output)
            preds.append(pred.detach().cpu())   # collect prediction
    preds = torch.cat(preds, dim=0).numpy()     # concatenate all predictions and convert to a numpy array
    return preds

2.3.8 模型初始化

初始化训练过程中需要的设备、目录和超参数配置,以便在训练模型之前进行必要的准备工作。

device = get_device()                 # get the current available device ('cpu' or 'cuda')
os.makedirs('models', exist_ok=True)  # The trained model will be saved to ./models/
target_only = True                   # TODO: Using 40 states & 2 tested_positive features

seed = 459
np.random.seed(seed)
delta = np.random.normal(loc=0,scale = 0.000001)

# TODO: How to tune these hyper-parameters to improve your model's performance?
config = {
    'n_epochs': 3000,                # maximum number of epochs
    'batch_size': 270,               # mini-batch size for dataloader
    'optimizer': 'Adam',             # optimization algorithm (optimizer in torch.optim)
    'optim_hparas': {                # hyper-parameters for the optimizer (depends on which optimizer you are using)
        'lr': 0.003,                 # learning rate of Adam
        #'weight_decay': 1e-8        # weight decay (L2 regularization)
    },
    'l1_lambda':1e-5 + delta,        # L1 regularization
    'early_stop': 200,               # early stopping epochs (the number epochs since your model's last improvement)
    'save_path': 'models/model.pth'  # your model will be saved here
}


myseed = 42069  # set a random seed for reproducibility
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(myseed)
torch.manual_seed(myseed)
if torch.cuda.is_available():
    torch.cuda.manual_seed_all(myseed)

2.3 模型运行

tr_set, mean, std = prep_dataloader(tr_path, 'train', config['batch_size'], target_only=target_only)
dv_set, _, _ = prep_dataloader(tr_path, 'dev', config['batch_size'], target_only=target_only, mean=mean, std=std)
tt_set, _, _ = prep_dataloader(tt_path, 'test', config['batch_size'], target_only=target_only, mean=mean, std=std)

Finished reading the train set of COVID19 Dataset (2160 samples found, each dim = 14)
Finished reading the dev set of COVID19 Dataset (540 samples found, each dim = 14)
Finished reading the test set of COVID19 Dataset (893 samples found, each dim = 14)

model = NeuralNet(tr_set.dataset.dim).to(device)  # Construct model and move to device
model_loss, model_loss_record = train(tr_set, dv_set, model, config, device)

深度学习 二:COVID 19 Cases Prediction (Regression)_第1张图片

plot_learning_curve(model_loss_record, title='deep model')

深度学习 二:COVID 19 Cases Prediction (Regression)_第2张图片

del model
model = NeuralNet(tr_set.dataset.dim).to(device)
ckpt = torch.load(config['save_path'], map_location='cpu')  # Load your best model
model.load_state_dict(ckpt)
if len(dv_set) > 0:
    plot_pred(dv_set, model, device)  # Show prediction on the validation set

深度学习 二:COVID 19 Cases Prediction (Regression)_第3张图片

def save_pred(preds, file):
    ''' Save predictions to specified file '''
    print('Saving results to {}'.format(file))
    with open(file, 'w') as fp:
        writer = csv.writer(fp)
        writer.writerow(['id', 'tested_positive'])
        for i, p in enumerate(preds):
            writer.writerow([i, p])

preds = test(tt_set, model, device)  # predict COVID-19 cases with your model
save_pred(preds, 'COVID-19 pred.csv')  # save prediction file to COVID-19 pred.csv

你可能感兴趣的:(机器学习,深度学习,人工智能,python,数据分析,非线性回归,deep,learning)