一个本硕双非的小菜鸡,备战24年秋招,计划刷完卡子哥的刷题计划,加油!
推荐一手卡子哥的刷题网站,感谢卡子哥。代码随想录
98. 验证二叉搜索树
Note:可以先使用中序遍历存储到数组中,再判断是否有序。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
private:
vector<int> vec;
void traversal(TreeNode* root) {
if (root == NULL) return;
traversal(root->left);
vec.push_back(root->val);
traversal(root->right);
}
public:
bool isValidBST(TreeNode* root) {
vec.clear();
traversal(root);
for (int i = 1; i < vec.size(); i++) {
if (vec[i] <= vec[i - 1])
return false;
}
return true;
}
};
530. 二叉搜索树的最小绝对差
Note:跟98类似,一样的变成数组来判断,很舒服
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
private:
vector<int> vec;
void travelsal(TreeNode* root) {
if (root == NULL) return;
travelsal(root->left);
vec.push_back(root->val);
travelsal(root->right);
}
public:
int getMinimumDifference(TreeNode* root) {
vec.clear();
travelsal(root);
if (vec.size() < 2) return 0;
int result = INT_MAX;
for (int i = 1; i < vec.size(); i++) {
result = min (result, vec[i] - vec[i - 1]);
}
return result;
}
};
注:此题与783. 二叉搜索树节点最小距离一模一样。
501. 二叉搜索树中的众数
Note:转有序数组
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
private:
int maxCount = 0;
int count = 0;
TreeNode* pre = NULL;
vector<int> result;
void searchBST(TreeNode* cur) {
if (cur == NULL) return;
searchBST(cur->left);
if (pre == NULL) {
count = 1;
} else if (pre->val == cur->val) {
count++;
} else {
count = 1;
}
pre = cur;
if (count == maxCount) {
result.push_back(cur->val);
}
if (count > maxCount) {
maxCount = count;
result.clear();
result.push_back(cur->val);
}
searchBST(cur->right);
return;
}
public:
vector<int> findMode(TreeNode* root) {
count = 0;
maxCount = 0;
pre = NULL;
result.clear();
searchBST(root);
return result;
}
};
236. 二叉树的最近公共祖先
Note:搜索边与搜索整棵树的写法不同,边是直接返回,树是用变量left、right接住返回值
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (root == q || root == p || root == NULL) return root;
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);
if (left != NULL && right != NULL) return root;
if (left == NULL && right != NULL) return right;
else if (left != NULL && right == NULL) return left;
else return NULL;
}
};
235. 二叉搜索树的最近公共祖先
Note:跟236类似
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
private:
TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q) {
if (cur == NULL) return cur;
if (cur->val > p->val && cur->val > q->val) {
TreeNode* left = traversal(cur->left, p, q);
if (left != NULL) {
return left;
}
}
if (cur->val < p->val && cur->val < q->val) {
TreeNode* right = traversal(cur->right, p, q);
if (right != NULL) {
return right;
}
}
return cur;
}
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
return traversal(root, p, q);
}
};
701. 二叉搜索树中的插入操作
Note:这题算不上中等,根据搜索树性质插就行了
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
if (root == NULL) {
TreeNode* node = new TreeNode(val);
return node;
}
if (root->val > val) root->left = insertIntoBST(root->left, val);
if (root->val < val) root->right = insertIntoBST(root->right, val);
return root;
}
};
Note:分为五种情况都需要讨论
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if (root == NULL) return root;
if (root->val == key) {
if (root->left == NULL && root->right == NULL) {
delete root;
return NULL;
}
else if (root->left == NULL && root->right != NULL) {
auto retNode = root->right;
delete root;
return retNode;
}
else if (root->left != NULL && root->right == NULL) {
auto retNode = root->left;
delete root;
return retNode;
}
else {
TreeNode* cur = root->right;
while(cur->left != NULL) {
cur = cur->left;
}
cur->left = root->left;
TreeNode* tmp = root;
root = root->right;
delete tmp;
return root;
}
}
if (root->val > key) root->left = deleteNode(root->left, key);
if (root->val < key) root->right = deleteNode(root->right, key);
return root;
}
};
669. 修剪二叉搜索树
Note:递归,但是要考虑删除节点的左右子树
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* trimBST(TreeNode* root, int low, int high) {
if (root == NULL) return NULL;
if (root->val < low) {
TreeNode* right = trimBST(root->right, low, high);
return right;
}
if (root->val > high) {
TreeNode* left = trimBST(root->left, low, high);
return left;
}
root->left = trimBST(root->left, low, high);
root->right = trimBST(root->right, low, high);
return root;
}
};
108. 将有序数组转换为二叉搜索树
Note:递归遍历,从中间一个个往上加
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
private:
TreeNode* traversal(vector<int>& nums, int left, int right) {
if (left > right) return NULL;
int mid = left + ((right - left) / 2);
TreeNode* root = new TreeNode(nums[mid]);
root->left = traversal(nums, left, mid - 1);
root->right = traversal(nums, mid + 1, right);
return root;
}
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
TreeNode* root = traversal(nums, 0, nums.size() - 1);
return root;
}
};
538. 把二叉搜索树转换为累加树
Note:一样先转成数组(注意要右中左遍历),然后再依次相加。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
private:
int pre = 0;
void travesal(TreeNode* cur) {
if (cur == NULL) return;
travesal(cur->right);
cur->val += pre;
pre = cur->val;
travesal(cur->left);
}
public:
TreeNode* convertBST(TreeNode* root) {
pre = 0;
travesal(root);
return root;
}
};
因为二叉树题比较多,就分上中下三篇记录了,系统的搞懂了前中后的两种遍历方式,二叉树是很多算法的基础,非常重要!代码随想录一刷打卡——二叉树(下篇)
啊,二叉树终于结束了,题很多很好,不愧是数据结构中最多花样的,继续努力吧。