hadoop上运行java程序

1,分词统计

import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;

public class WordCount {

    public static class Map extends MapReduceBase implements
            Mapper {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(LongWritable key, Text value,
                OutputCollector output, Reporter reporter)
                throws IOException {
            String line = value.toString();
            StringTokenizer tokenizer = new StringTokenizer(line);
            while (tokenizer.hasMoreTokens()) {
                word.set(tokenizer.nextToken());
                output.collect(word, one);
            }
        }
    }

    public static class Reduce extends MapReduceBase implements
            Reducer {

        public void reduce(Text key, Iterator values,
                OutputCollector output, Reporter reporter)
                throws IOException {
            int sum = 0;
            while (values.hasNext()) {
                sum += values.next().get();
            }
            output.collect(key, new IntWritable(sum));
        }
    }

    public static void main(String[] args) throws Exception {
        JobConf conf = new JobConf(WordCount.class);
        conf.setJobName("wordcount");

        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);

        conf.setMapperClass(Map.class);
        conf.setCombinerClass(Reduce.class);
        conf.setReducerClass(Reduce.class);

        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);

        FileInputFormat.setInputPaths(conf, new Path(args[0]));
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));

        JobClient.runJob(conf);
    }

}
 





Eclipse打包

JAR File->................反正自己会了,忽略掉吧,简单的说

生成JAR文件,上传到/opt/hadoop/下

然后在hdfs上建立一个文件夹,hadoop fs -mkdir /test

hadoop fs -put /root/wordtestnum.txt  /test

然后执行hadoop jar /opt/hadoop/count.jar /test/wordtestnum.txt    /test/out

查看运行结果hadoop fs -cat /test/out/part-00000




二,统计平均分

import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;

public class StaticScore {

	public static class Map extends MapReduceBase implements
			Mapper<LongWritable, Text, Text, IntWritable> {
		// private Text word = new Text();

		public void map(LongWritable key, Text value,
				OutputCollector<Text, IntWritable> output, Reporter reporter)
				throws IOException {
			String line = value.toString();
			StringTokenizer tokenizerArticle = new StringTokenizer(line, "\n");
			while (tokenizerArticle.hasMoreTokens()) {
				StringTokenizer tokenizerLine = new StringTokenizer(
						tokenizerArticle.nextToken());
				String strName = tokenizerLine.nextToken();
				String strScore = tokenizerLine.nextToken();

				Text name = new Text(strName);
				int scoreInt = Integer.parseInt(strScore);
				output.collect(name, new IntWritable(scoreInt));
			}
		}
	}

	public static class Reduce extends MapReduceBase implements
			Reducer<Text, IntWritable, Text, IntWritable> {

		public void reduce(Text key, Iterator<IntWritable> values,
				OutputCollector<Text, IntWritable> output, Reporter reporter)
				throws IOException {
			int sum = 0;
			int count = 0;
			while (values.hasNext()) {
				sum += values.next().get();
				count++;
			}
			int average = (int) sum / count;
			output.collect(key, new IntWritable(average));
		}
	}

	public static void main(String[] args) throws Exception {
		JobConf conf = new JobConf(StaticScore.class);
		conf.setJobName("staticscore");

		conf.setOutputKeyClass(Text.class);
		conf.setOutputValueClass(IntWritable.class);

		conf.setMapperClass(Map.class);
		conf.setCombinerClass(Reduce.class);
		conf.setReducerClass(Reduce.class);

		conf.setInputFormat(TextInputFormat.class);
		conf.setOutputFormat(TextOutputFormat.class);

		FileInputFormat.setInputPaths(conf, new Path(args[0]));
		FileOutputFormat.setOutputPath(conf, new Path(args[1]));

		JobClient.runJob(conf);
	}

}
 




TXT文本:

[code=&quot;html&quot;]罗玉网  122
曾子明  88
欧汉声  89
汪涵    90
曾子明  78
汪涵    89
汪涵    99



代码解释详见:https://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop2/

 

你可能感兴趣的:(java,hadoop,hive,hdfs)