You are given a 2D char matrix representing the game board. 'M' represents an unrevealed mine, 'E' represents an unrevealed empty square, 'B' represents a revealed blank square that has no adjacent (above, below, left, right, and all 4 diagonals) mines, digit ('1' to '8') represents how many mines are adjacent to this revealed square, and finally 'X' represents a revealed mine.
Now given the next click position (row and column indices) among all the unrevealed squares ('M' or 'E'), return the board after revealing this position according to the following rules:
Example 1:
Input: [['E', 'E', 'E', 'E', 'E'], ['E', 'E', 'M', 'E', 'E'], ['E', 'E', 'E', 'E', 'E'], ['E', 'E', 'E', 'E', 'E']] Click : [3,0] Output: [['B', '1', 'E', '1', 'B'], ['B', '1', 'M', '1', 'B'], ['B', '1', '1', '1', 'B'], ['B', 'B', 'B', 'B', 'B']] Explanation:
Example 2:
Input: [['B', '1', 'E', '1', 'B'], ['B', '1', 'M', '1', 'B'], ['B', '1', '1', '1', 'B'], ['B', 'B', 'B', 'B', 'B']] Click : [1,2] Output: [['B', '1', 'E', '1', 'B'], ['B', '1', 'X', '1', 'B'], ['B', '1', '1', '1', 'B'], ['B', 'B', 'B', 'B', 'B']] Explanation:
Note:
这道题就是经典的扫雷游戏啦,经典到不能再经典,从Win98开始,附件中始终存在的游戏,和纸牌、红心大战、空当接龙一起称为四大天王,曾经消耗了博主太多的时间。小时侯一直不太会玩扫雷,就是瞎点,完全不根据数字分析,每次点几下就炸了,就觉得这个游戏好无聊。后来长大了一些,慢慢的理解了游戏的玩法,才发现这个游戏果然很经典,就像破解数学难题一样,充满了挑战与乐趣。花样百出的LeetCode这次把扫雷出成题,让博主借机回忆了一把小时侯,不错不错,那么来做题吧。题目中图文并茂,相信就算是没玩过扫雷的也能弄懂了,而且规则也说的比较详尽了,那么我们相对应的做法也就明了了。对于当前需要点击的点,我们先判断是不是雷,是的话直接标记X返回即可。如果不是的话,我们就数该点周围的雷个数,如果周围有雷,则当前点变为雷的个数并返回。如果没有的话,我们再对周围所有的点调用递归函数再点击即可。参见代码如下:
解法一:
class Solution {
public:
vector> updateBoard(vector>& board, vector& click) {
if (board.empty() || board[0].empty()) return {};
int m = board.size(), n = board[0].size(), row = click[0], col = click[1], cnt = 0;
if (board[row][col] == 'M') {
board[row][col] = 'X';
} else {
for (int i = -1; i < 2; ++i) {
for (int j = -1; j < 2; ++j) {
int x = row + i, y = col + j;
if (x < 0 || x >= m || y < 0 || y >= n) continue;
if (board[x][y] == 'M') ++cnt;
}
}
if (cnt > 0) {
board[row][col] = cnt + '0';
} else {
board[row][col] = 'B';
for (int i = -1; i < 2; ++i) {
for (int j = -1; j < 2; ++j) {
int x = row + i, y = col + j;
if (x < 0 || x >= m || y < 0 || y >= n) continue;
if (board[x][y] == 'E') {
vector nextPos{x, y};
updateBoard(board, nextPos);
}
}
}
}
}
return board;
}
};