本文转载于:https://www.cnblogs.com/kailugaji/p/13086180.html
作者:凯鲁嘎吉 - 博客园 凯鲁嘎吉 - 博客园
作者:凯鲁嘎吉 - 博客园 凯鲁嘎吉 - 博客园
更多请看:随笔分类 - MATLAB作图
之前写过一篇博文,是关于一元非线性曲线拟合,自定义曲线函数。
现在用最小二乘法拟合多元函数,实现线性拟合与非线性拟合,其中非线性拟合要求自定义拟合函数。
下面给出三种拟合方式,第一种是多元线性拟合(回归),第二三种是多元非线性拟合,实际中第二三种方法是一个意思,任选一种即可,推荐第二种拟合方法。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
1 2 3 4 5 6 |
|
choose=1:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
choose=2:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
|
choose=3:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
1)多元非线性函数拟合中参数的初始值需要提前设置,有些情况下,参数的初始选取对函数拟合结果影响极大,需要谨慎处理。
2)第二三种方法中,由于数据是多维的,因此只展示了第一个维度的拟合函数图。如有需要,可自行修改。
3)自定义拟合函数要看清楚数据X的维度,我这里是三维的,因此有x(:, 3),如果是D维,要写到x(:, D)。同时,参数beta的尺寸也要相应更新。
4)数据归一化方法自行选择,可能有些数据集不适合最大-最小归一化。
5)很多时候拟合函数很难构造,线性拟合效果又不理想,在这种情况下,可以尝试使用神经网络,深度学习,支持向量机等工具进行拟合非线性函数。这里是BP神经网络来进行拟合(回归)的一个例子。MATLAB实例:BP神经网络用于回归任务 - 凯鲁嘎吉 - 博客园