java学习第四十天到第五十天

java学习第四十一天:顺序查找与折半查找

学习:

顺序查找使用岗哨可以节约一半的时间. 为此, 第 0 个位置不可以放有意义的数据, 即有效数据只有 length - 1 个.
顺序查找时间复杂度为 O ( n ) O(n)O(n).
折半查找时间复杂度为 O ( log ⁡ n ) O(\log n)O(logn).
书上为简化起见, 只关注键. 这里使用键值对来表示一条完整的数据. 实际应用中可以把 content 改成任何想要的数据类型.

顺序查找基本思路:
从第一个元素arr[0]开始逐个与需要查找的元素target进行比较,如果等于需要查找的元素x,返回元素arr[i]的下标i,否则从下一个元素继续比较。如果查找到最后都没有找到,则返回-1。
该算法的时间复杂度为O(n)。

代码输入:

package datastructure;


public class DataArray {

	class DataNode {

		int key;


		String content;


		DataNode(int paraKey, String paraContent) {
			key = paraKey;
			content = paraContent;
		}// Of the second constructor


		public String toString() {
			return "(" + key + ", " + content + ") ";
		}// Of toString
	}// Of class DataNode

	/**
	 * The data array.
	 */
	DataNode[] data;

	/**
	 * The length of the data array.
	 */
	int length;


	public DataArray(int[] paraKeyArray, String[] paraContentArray) {
		length = paraKeyArray.length;
		data = new DataNode[length];

		for (int i = 0; i < length; i++) {
			data[i] = new DataNode(paraKeyArray[i], paraContentArray[i]);
		} // Of for i
	}// Of the first constructor

	/**
	 *********************
	 * Overrides the method claimed in Object, the superclass of any class.
	 *********************
	 */
	public String toString() {
		String resultString = "I am a data array with " + length + " items.\r\n";
		for (int i = 0; i < length; i++) {
			resultString += data[i] + " ";
		} // Of for i

		return resultString;
	}// Of toString


	public String sequentialSearch(int paraKey) {
		data[0].key = paraKey;

		int i;
		// Note that we do not judge i >= 0 since data[0].key = paraKey.
		// In this way the runtime is saved about 1/2.
		for (i = length - 1; data[i].key != paraKey; i--)
			;

		return data[i].content;
	}// Of sequentialSearch

	/**
	 *********************
	 * Test the method.
	 *********************
	 */
	public static void sequentialSearchTest() {
		int[] tempUnsortedKeys = { -1, 5, 3, 6, 10, 7, 1, 9 };
		String[] tempContents = { "null", "if", "then", "else", "switch", "case", "for", "while" };
		DataArray tempDataArray = new DataArray(tempUnsortedKeys, tempContents);

		System.out.println(tempDataArray);

		System.out.println("Search result of 10 is: " + tempDataArray.sequentialSearch(10));
		System.out.println("Search result of 5 is: " + tempDataArray.sequentialSearch(5));
		System.out.println("Search result of 4 is: " + tempDataArray.sequentialSearch(4));
	}// Of sequentialSearchTest


	public String binarySearch(int paraKey) {
		int tempLeft = 0;
		int tempRight = length - 1;
		int tempMiddle = (tempLeft + tempRight) / 2;

		while (tempLeft <= tempRight) {
			tempMiddle = (tempLeft + tempRight) / 2;
			if (data[tempMiddle].key == paraKey) {
				return data[tempMiddle].content;
			} else if (data[tempMiddle].key <= paraKey) {
				tempLeft = tempMiddle + 1;
			} else {
				tempRight = tempMiddle - 1;
			}
		} // Of while

		// Not found.
		return "null";
	}// Of binarySearch

	public static void binarySearchTest() {
		int[] tempSortedKeys = { 1, 3, 5, 6, 7, 9, 10 };
		String[] tempContents = { "if", "then", "else", "switch", "case", "for", "while" };
		DataArray tempDataArray = new DataArray(tempSortedKeys, tempContents);

		System.out.println(tempDataArray);

		System.out.println("Search result of 10 is: " + tempDataArray.binarySearch(10));
		System.out.println("Search result of 5 is: " + tempDataArray.binarySearch(5));
		System.out.println("Search result of 4 is: " + tempDataArray.binarySearch(4));
	}// Of binarySearchTest
	

	public static void main(String args[]) {
		System.out.println("\r\n-------sequentialSearchTest-------");
		sequentialSearchTest();

		System.out.println("\r\n-------binarySearchTest-------");
		binarySearchTest();
	}// Of main

}// Of class DataArray

输出结果:

-------sequentialSearchTest-------
I am a data array with 8 items.
(-1, null)  (5, if)  (3, then)  (6, else)  (10, switch)  (7, case)  (1, for)  (9, while)  
Search result of 10 is: switch
Search result of 5 is: if
Search result of 4 is: null

-------binarySearchTest-------
I am a data array with 7 items.
(1, if)  (3, then)  (5, else)  (6, switch)  (7, case)  (9, for)  (10, while)  
Search result of 10 is: while
Search result of 5 is: else
Search result of 4 is: null

java学习第四十二天:哈希表

学习:

神奇、实用、粗暴的方法. 空间换时间.
保证空间足够.
在构造方法中装入数据. 自己可以写代码增加数据.
使用 (最简单的) 除数取余法获得数据存放地址 (下标).
使用 (最简单的) 顺移位置法解决冲突.
搜索的时间复杂度仅与冲突概率相关, 间接地就与装填因子相关. 如果空间很多, 可以看出时间复杂度为 O ( 1 ) O(1)O(1).
 

散列表Hash table,也叫哈希表),是根据键(Key)而直接访问在内存存储位置的数据结构。也就是说,它通过计算一个关于键值的函数,将所需查询的数据映射到表中一个位置来访问记录,这加快了查找速度。这个映射函数称做散列函数,存放记录的数组称做散列表

代码输入:


	public DataArray(int[] paraKeyArray, String[] paraContentArray, int paraLength) {
		// Step 1. Initialize.
		length = paraLength;
		data = new DataNode[length];

		for (int i = 0; i < length; i++) {
			data[i] = null;
		} // Of for i

		// Step 2. Fill the data.
		int tempPosition;

		for (int i = 0; i < paraKeyArray.length; i++) {
			// Hash.
			tempPosition = paraKeyArray[i] % paraLength;

			// Find an empty position
			while (data[tempPosition] != null) {
				tempPosition = (tempPosition + 1) % paraLength;
				System.out.println("Collision, move forward for key " + paraKeyArray[i]);
			} // Of while

			data[tempPosition] = new DataNode(paraKeyArray[i], paraContentArray[i]);
		} // Of for i
	}// Of the second constructor

	public String hashSearch(int paraKey) {
		int tempPosition = paraKey % length;
		while (data[tempPosition] != null) {
			if (data[tempPosition].key == paraKey) {
				return data[tempPosition].content;
			} // Of if
			System.out.println("Not this one for " + paraKey);
			tempPosition = (tempPosition + 1) % length;
		} // Of while

		return "null";
	}// Of hashSearch


	public static void hashSearchTest() {
		int[] tempUnsortedKeys = { 16, 33, 38, 69, 57, 95, 86 };
		String[] tempContents = { "if", "then", "else", "switch", "case", "for", "while" };
		DataArray tempDataArray = new DataArray(tempUnsortedKeys, tempContents, 19);

		System.out.println(tempDataArray);

		System.out.println("Search result of 95 is: " + tempDataArray.hashSearch(95));
		System.out.println("Search result of 38 is: " + tempDataArray.hashSearch(38));
		System.out.println("Search result of 57 is: " + tempDataArray.hashSearch(57));
		System.out.println("Search result of 4 is: " + tempDataArray.hashSearch(4));
	}// Of hashSearchTest


	public static void main(String args[]) {
		System.out.println("\r\n-------sequentialSearchTest-------");
		sequentialSearchTest();

		System.out.println("\r\n-------binarySearchTest-------");
		binarySearchTest();

		System.out.println("\r\n-------hashSearchTest-------");
		hashSearchTest();
	}// Of main

输出结果:

-------hashSearchTest-------
Collision, move forward for key 57
Collision, move forward for key 95
Collision, move forward for key 95
I am a data array with 19 items.
(38, else)  (57, case)  (95, for)  null null null null null null null (86, while)  null (69, switch)  null (33, then)  null (16, if)  null null 
Not this one for 95
Not this one for 95
Search result of 95 is: for
Search result of 38 is: else
Not this one for 57
Search result of 57 is: case
Search result of 4 is: null

java学习第四十三天:插入排序

学习:

插入排序是简单直接的排序方式之一. 代码非常短.
每次保证前 i 个数据是有序的.
先做简单的事情 (第 1 轮最多有 1 次移动), 再做麻烦的事情 (最后一轮最多有 n − 1 n - 1n−1 次移动).
下标 0 的数据为岗哨, 与 41 天内容同理. 比其它排序方式多用一个空间.
又见 this.
tempNode 只分配了引用 (指针) 的空间, 并未 new
 

代码输入:

	
	public void insertionSort() {
		DataNode tempNode;
		int j;
		for (int i = 2; i < length; i++) {
			tempNode = data[i];
			
			//Find the position to insert.
			//At the same time, move other nodes.
			for (j = i - 1; data[j].key > tempNode.key; j--) {
				data[j + 1] = data[j];
			} // Of for j
			
			//Insert.
			data[j + 1] = tempNode;
			
			System.out.println("Round " + (i - 1));
			System.out.println(this);
		} // Of for i
	}// Of insertionSort


	public static void insertionSortTest() {
		int[] tempUnsortedKeys = { -100, 5, 3, 6, 10, 7, 1, 9 };
		String[] tempContents = { "null", "if", "then", "else", "switch", "case", "for", "while" };
		DataArray tempDataArray = new DataArray(tempUnsortedKeys, tempContents);

		System.out.println(tempDataArray);

		tempDataArray.insertionSort();
		System.out.println("Result\r\n" + tempDataArray);
	}// Of insertionSortTest

java学习第四十四天:希尔排序

学习:

多达 4 重循环, 但时间复杂度只有 O ( n 2 ) O(n^2)O(n 
2
 ). 多次排序反正减少了平均排序时间. 神奇的脑回路.
有了昨天的程序铺垫, 本程序写起来也不难.
岗哨的个数与最初的步长相关, 我们的程序中为 5. 简便起见我就没用了.
可以改变 tempJumpArray.
测试用例多用了几个数据, 便于观察.

希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

代码输入:

	
	public void shellSort() {
		DataNode tempNode;
		int[] tempJumpArray = { 5, 3, 1 };
		int tempJump;
		int p;
		for (int i = 0; i < tempJumpArray.length; i++) {
			tempJump = tempJumpArray[i];
			for (int j = 0; j < tempJump; j++) {
				for (int k = j + tempJump; k < length; k += tempJump) {
					tempNode = data[k];
					// Find the position to insert.
					// At the same time, move other nodes.
					for (p = k - tempJump; p >= 0; p -= tempJump) {
						if (data[p].key > tempNode.key) {
							data[p + tempJump] = data[p];
						} else {
							break;
						} // Of if
					} // Of for p

					// Insert.
					data[p + tempJump] = tempNode;
				} // Of for k
			} // Of for j
			System.out.println("Round " + i);
			System.out.println(this);
		} // Of for i
	}// Of shellSort

	public static void shellSortTest() {
		int[] tempUnsortedKeys = { 5, 3, 6, 10, 7, 1, 9, 12, 8, 4 };
		String[] tempContents = { "if", "then", "else", "switch", "case", "for", "while", "throw", "until", "do" };
		DataArray tempDataArray = new DataArray(tempUnsortedKeys, tempContents);

		System.out.println(tempDataArray);

		tempDataArray.shellSort();
		System.out.println("Result\r\n" + tempDataArray);
	}// Of shellSortTest

java学习第四十五天: 冒泡排序

学习:

  1. 每次确定当前最大值, 也就是确定一个位置的数据.
  2. 仅交换相邻数据.
  3. 如果某一趟没有交换, 就表示数据已经有序 (早熟, premature), 可以提前结束了.

冒泡排序:是一种简单的排序算法。它重复地循环要排序的元素列,依次比较两个相邻的元素,如果顺序(如从大到小、首字母从Z到A)错误就把他们交换过来。走访元素的工作是重复地进行直到没有相邻元素需要交换,也就是说该元素列已经排序完成。

代码输入:


	public void bubbleSort() {
		boolean tempSwapped;
		DataNode tempNode;
		for (int i = length - 1; i > 1; i--) {
			tempSwapped = false;
			for (int j = 0; j < i; j++) {
				if (data[j].key > data[j + 1].key) {
					// Swap.
					tempNode = data[j + 1];
					data[j + 1] = data[j];
					data[j] = tempNode;

					tempSwapped = true;
				} // Of if
			} // Of for j

			// No swap in this round. The data are already sorted.
			if (!tempSwapped) {
				System.out.println("Premature");
				break;
			} // Of if

			System.out.println("Round " + (length - i));
			System.out.println(this);
		} // Of for i
	}// Of bubbleSort

	public static void bubbleSortTest() {
		int[] tempUnsortedKeys = { 1, 3, 6, 10, 7, 5, 9 };
		String[] tempContents = { "if", "then", "else", "switch", "case", "for", "while" };
		DataArray tempDataArray = new DataArray(tempUnsortedKeys, tempContents);

		System.out.println(tempDataArray);

		tempDataArray.bubbleSort();
		System.out.println("Result\r\n" + tempDataArray);
	}// Of bubbleSortTest

java学习第四十六天: 快速排序

学习:

  1. 平均时间复杂度为 O ( n log ⁡ n ) O(n\log n)O(nlogn), 但最坏情况还是 O ( n 2 ) O(n^2)O(n 
    2
     ).
    Pivot 应该选 (该子序列的) 最后一个元素.
    递归算法, 每次只能确定 pivot 的位置.
    判断条件 && (tempLeft < tempRight) 不能少.
     

快速排序是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

代码输入:


	public void quickSortRecursive(int paraStart, int paraEnd) {
		// Nothing to sort.
		if (paraStart >= paraEnd) {
			return;
		} // Of if

		int tempPivot = data[paraEnd].key;
		DataNode tempNodeForSwap;

		int tempLeft = paraStart;
		int tempRight = paraEnd - 1;

		// Find the position for the pivot.
		// At the same time move smaller elements to the left and bigger one to the
		// right.
		while (true) {
			while ((data[tempLeft].key < tempPivot) && (tempLeft < tempRight)) {
				tempLeft++;
			} // Of while

			while ((data[tempRight].key > tempPivot) && (tempLeft < tempRight)) {
				tempRight--;
			} // Of while

			if (tempLeft < tempRight) {
				// Swap.
				System.out.println("Swapping " + tempLeft + " and " + tempRight);
				tempNodeForSwap = data[tempLeft];
				data[tempLeft] = data[tempRight];
				data[tempRight] = tempNodeForSwap;
			} else {
				break;
			} // Of if
		} // Of while

		// Swap
		if (data[tempLeft].key > tempPivot) {
			tempNodeForSwap = data[paraEnd];
			data[paraEnd] = data[tempLeft];
			data[tempLeft] = tempNodeForSwap;
		} else {
			tempLeft++;
		} // Of if

		System.out.print("From " + paraStart + " to " + paraEnd + ": ");
		System.out.println(this);

		quickSortRecursive(paraStart, tempLeft - 1);
		quickSortRecursive(tempLeft + 1, paraEnd);
	}// Of quickSortRecursive


	public void quickSort() {
		quickSortRecursive(0, length - 1);
	}// Of quickSort


	public static void quickSortTest() {
		int[] tempUnsortedKeys = { 1, 3, 12, 10, 5, 7, 9 };
		String[] tempContents = { "if", "then", "else", "switch", "case", "for", "while" };
		DataArray tempDataArray = new DataArray(tempUnsortedKeys, tempContents);

		System.out.println(tempDataArray);

		tempDataArray.quickSort();
		System.out.println("Result\r\n" + tempDataArray);
	}// Of quickSortTest

java学习第四十七天: 选择排序

学习:

  1. 又是一个基础 (简单) 算法.
    与插入排序不同, 先做最麻烦的, 要进行 n − 1 n - 1n−1 次比较才能获得最小的数据.
    数据一旦被选择并确定位置, 就不再改变.
    做为一种简单算法, 其时间复杂度为 O ( n 2 ) O(n^2)O(n  ).
    只需要两个额外的空间来存放最小数据的引用与下标, 因此空间复杂度为 O ( 1 ) O(1)O(1).

选择式排序属于内部排序法,是从预排序的数据中,按指定的规则选出某一元素,再依规定交换位置后达到排序的目的。

代码输入:


	public void selectionSort() {
		DataNode tempNode;
		int tempIndexForSmallest;

		for (int i = 0; i < length - 1; i++) {
			// Initialize.
			tempNode = data[i];
			tempIndexForSmallest = i;
			for (int j = i + 1; j < length; j++) {
				if (data[j].key < tempNode.key) {
					tempNode = data[j];
					tempIndexForSmallest = j;
				} // Of if
			} // Of for j

			// Change the selected one with the current one.
			data[tempIndexForSmallest] = data[i];
			data[i] = tempNode;
		} // Of for i
	}// Of selectionSort

	
	public static void selectionSortTest() {
		int[] tempUnsortedKeys = { 5, 3, 6, 10, 7, 1, 9 };
		String[] tempContents = { "if", "then", "else", "switch", "case", "for", "while" };
		DataArray tempDataArray = new DataArray(tempUnsortedKeys, tempContents);

		System.out.println(tempDataArray);

		tempDataArray.selectionSort();
		System.out.println("Result\r\n" + tempDataArray);
	}// Of selectionSortTest

java学习第四十八天: 堆排序

学习:

  1. 堆排序可能是排序算法中最难的. 用到了二叉树.
    建初始堆比较费劲.
    调整堆的时间复杂度为 O ( log ⁡ n ) O(\log n)O(logn), 所以总体时间复杂度只有 O ( n log ⁡ n ) O(n \log n)O(nlogn).
    空间复杂度只有 O ( 1 ) O(1)O(1)
     

堆排序是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

代码输入:


	public void heapSort() {
		DataNode tempNode;
		// Step 1. Construct the initial heap.
		for (int i = length / 2 - 1; i >= 0; i--) {
			adjustHeap(i, length);
		} // Of for i
		System.out.println("The initial heap: " + this + "\r\n");

		// Step 2. Swap and reconstruct.
		for (int i = length - 1; i > 0; i--) {
			tempNode = data[0];
			data[0] = data[i];
			data[i] = tempNode;

			adjustHeap(0, i);
			System.out.println("Round " + (length - i) + ": " + this);
		} // Of for i
	}// Of heapSort


	public void adjustHeap(int paraStart, int paraLength) {
		DataNode tempNode = data[paraStart];
		int tempParent = paraStart;
		int tempKey = data[paraStart].key;

		for (int tempChild = paraStart * 2 + 1; tempChild < paraLength; tempChild = tempChild * 2 + 1) {
			// The right child is bigger.
			if (tempChild + 1 < paraLength) {
				if (data[tempChild].key < data[tempChild + 1].key) {
					tempChild++;
				} // Of if
			} // Of if

			System.out.println("The parent position is " + tempParent + " and the child is " + tempChild);
			if (tempKey < data[tempChild].key) {
				// The child is bigger.
				data[tempParent] = data[tempChild];
				System.out.println("Move " + data[tempChild].key + " to position " + tempParent);
				tempParent = tempChild;
			} else {
				break;
			} // Of if
		} // Of for tempChild

		data[tempParent] = tempNode;

		System.out.println("Adjust " + paraStart + " to " + paraLength + ": " + this);
	}// Of adjustHeap


	public static void heapSortTest() {
		int[] tempUnsortedKeys = { 5, 3, 6, 10, 7, 1, 9 };
		String[] tempContents = { "if", "then", "else", "switch", "case", "for", "while" };
		DataArray tempDataArray = new DataArray(tempUnsortedKeys, tempContents);

		System.out.println(tempDataArray);

		tempDataArray.heapSort();
		System.out.println("Result\r\n" + tempDataArray);
	}// Of heapSortTest

java学习第四十九天: 归并排序

学习:

  1. log ⁡ n \log nlogn 轮, 每轮 O ( n ) O(n)O(n) 次拷贝. 因此时间复杂度为 O ( n log ⁡ n ) O(n \log n)O(nlogn).
    空间复杂度为 O ( n ) O(n)O(n). 只需要一行辅助空间.
    全都是在拷贝引用, 而不是数据本身. 这是 Java 的特性.
    里面的两重循环总共只有 O ( n ) O(n)O(n). 这里是分成了若干个小组.
    归并两个有序小组的时候, 用了三个并列的循环.
    涉及分组后尾巴的各种情况, 所以需要相应的 if 语句.
     

代码输入:


	public void mergeSort() {
		// Step 1. Allocate space.

		int tempRow; // The current row
		int tempGroups; // Number of groups
		int tempActualRow; // Only 0 or 1
		int tempNextRow = 0;
		int tempGroupNumber;
		int tempFirstStart, tempSecondStart, tempSecondEnd;
		int tempFirstIndex, tempSecondIndex;
		int tempNumCopied;
		for (int i = 0; i < length; i++) {
			System.out.print(data[i]);
		} // Of for i
		System.out.println();

		DataNode[][] tempMatrix = new DataNode[2][length];

		// Step 2. Copy data.
		for (int i = 0; i < length; i++) {
			tempMatrix[0][i] = data[i];
		} // Of for i

		// Step 3. Merge. log n rounds
		tempRow = -1;
		for (int tempSize = 1; tempSize <= length; tempSize *= 2) {
			// Reuse the space of the two rows.
			tempRow++;
			System.out.println("Current row = " + tempRow);
			tempActualRow = tempRow % 2;
			tempNextRow = (tempRow + 1) % 2;

			tempGroups = length / (tempSize * 2);
			if (length % (tempSize * 2) != 0) {
				tempGroups++;
			} // Of if
			System.out.println("tempSize = " + tempSize + ", numGroups = " + tempGroups);

			for (tempGroupNumber = 0; tempGroupNumber < tempGroups; tempGroupNumber++) {
				tempFirstStart = tempGroupNumber * tempSize * 2;
				tempSecondStart = tempGroupNumber * tempSize * 2 + tempSize;
				if (tempSecondStart > length - 1) {
					// Copy the first part.
					for (int i = tempFirstStart; i < length; i++) {
						tempMatrix[tempNextRow][i] = tempMatrix[tempActualRow][i];
					} // Of for i
					continue;
				} // Of if
				tempSecondEnd = tempGroupNumber * tempSize * 2 + tempSize * 2 - 1;
				if (tempSecondEnd > length - 1) {
					tempSecondEnd = length - 1;
				} // Of if

				System.out
						.println("Trying to merge [" + tempFirstStart + ", " + (tempSecondStart - 1)
								+ "] with [" + tempSecondStart + ", " + tempSecondEnd + "]");

				tempFirstIndex = tempFirstStart;
				tempSecondIndex = tempSecondStart;
				tempNumCopied = 0;
				while ((tempFirstIndex <= tempSecondStart - 1)
						&& (tempSecondIndex <= tempSecondEnd)) {
					if (tempMatrix[tempActualRow][tempFirstIndex].key <= tempMatrix[tempActualRow][tempSecondIndex].key) {

						tempMatrix[tempNextRow][tempFirstStart
								+ tempNumCopied] = tempMatrix[tempActualRow][tempFirstIndex];
						tempFirstIndex++;
						System.out.println("copying " + tempMatrix[tempActualRow][tempFirstIndex]);
					} else {
						tempMatrix[tempNextRow][tempFirstStart
								+ tempNumCopied] = tempMatrix[tempActualRow][tempSecondIndex];
						System.out.println("copying " + tempMatrix[tempActualRow][tempSecondIndex]);
						tempSecondIndex++;
					} // Of if
					tempNumCopied++;
				} // Of while

				while (tempFirstIndex <= tempSecondStart - 1) {
					tempMatrix[tempNextRow][tempFirstStart
							+ tempNumCopied] = tempMatrix[tempActualRow][tempFirstIndex];
					tempFirstIndex++;
					tempNumCopied++;
				} // Of while

				while (tempSecondIndex <= tempSecondEnd) {
					tempMatrix[tempNextRow][tempFirstStart
							+ tempNumCopied] = tempMatrix[tempActualRow][tempSecondIndex];
					tempSecondIndex++;
					tempNumCopied++;
				} // Of while
			} // Of for groupNumber

			System.out.println("Round " + tempRow);
			for (int i = 0; i < length; i++) {
				System.out.print(tempMatrix[tempNextRow][i] + " ");
			} // Of for j
			System.out.println();
		} // Of for tempStepSize

		data = tempMatrix[tempNextRow];
	}// Of mergeSort


	public static void mergeSortTest() {
		int[] tempUnsortedKeys = { 5, 3, 6, 10, 7, 1, 9 };
		String[] tempContents = { "if", "then", "else", "switch", "case", "for", "while" };
		DataArray tempDataArray = new DataArray(tempUnsortedKeys, tempContents);

		System.out.println(tempDataArray);

		tempDataArray.mergeSort();
		System.out.println(tempDataArray);
	}// Of mergeSortTest

java学习第五十天: 小结

学习:

  1. 比较分析各种查找算法.
  2. 设计一个自己的 Hash 函数和一个冲突解决机制.
  3. 比较分析各种排序算法.
  4. 描述各种排序算法的特点和基本思想.

1.堆的意义在于最快的找到最大最小值,在堆中插入一个值,取走最大值或最小值重新构建堆结构,其时间复杂度为O(log N) ,而其它方法至少为O(N)。堆在实际中用途不在于排序,堆的应用:在于调度算法中,比如优先级调度,每次取优先级最高的.可以采用堆构造优先级队列,优化dijstra算法。对于海量数据,可以求数据的前n大或前n小。

2.哈希表主要是一O(1)时间内对查找对象定位,但是事实上,如果输入集合不确定的情况下,可能出现大量冲突,这样可能出现最差情况。所以哈希表如果在输入集合确定的情况下,选择合适的哈希函数和解决冲突的方法,可以在O(1)时间内完成。哈希的一些应用:在进程的组织中,有一种为hash组织,将进程根据pid存储的hash表中,便于查找。

3.二叉树排序树为了动态的查找和插入,保证在O(height时间),这就完成了hash不能完成的。但是二叉树可能出现最坏情况,使得二叉树的深度几乎与数据规模一致,这就会大大降低二叉排序树的效率。

比较分析各种排序算法请借鉴连接:各种排序算法详解


 

你可能感兴趣的:(java)