2021-12-15 714. 买卖股票的时机含手续费(贪心算法)

注:

题目:
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
示例 2:
输入:prices = [1,3,7,5,10,3], fee = 3
输出:6

提示:
1 <= prices.length <= 5 * 104
1 <= prices[i] < 5 * 104
0 <= fee < 5 * 104

题解:
思路与算法
方法一中,我们将手续费放在卖出时进行计算。如果我们换一个角度考虑,将手续费放在买入时进行计算,那么就可以得到一种基于贪心的方法。

我们用 buy 表示在最大化收益的前提下,如果我们手上拥有一支股票,那么它的最低买入价格是多少。在初始时,buy 的值为 prices[0] 加上手续费 fee。那么当我们遍历到第 i (i>0) 天时:

如果当前的股票价格 prices[i] 加上手续费 fee 小于 buy,那么与其使用 buy 的价格购买股票,我们不如以 prices[i]+fee 的价格购买股票,因此我们将 buy 更新为 prices[i]+fee;

如果当前的股票价格 prices[i] 大于 buy,那么我们直接卖出股票并且获得 prices[i]−buy 的收益。但实际上,我们此时卖出股票可能并不是全局最优的(例如下一天股票价格继续上升),因此我们可以提供一个反悔操作,看成当前手上拥有一支买入价格为 prices[i] 的股票,将 buy 更新为 prices[i]。这样一来,如果下一天股票价格继续上升,我们会获得 prices[i+1]−prices[i] 的收益,加上这一天 prices[i]−buy 的收益,恰好就等于在这一天不进行任何操作,而在下一天卖出股票的收益;

对于其余的情况,prices[i] 落在区间[buy−fee,buy] 内,它的价格没有低到我们放弃手上的股票去选择它,也没有高到我们可以通过卖出获得收益,因此我们不进行任何操作。

上面的贪心思想可以浓缩成一句话,即当我们卖出一支股票时,我们就立即获得了以相同价格并且免除手续费买入一支股票的权利。在遍历完整个数组 prices 之后之后,我们就得到了最大的总收益。

复杂度分析
时间复杂度:O(n),其中 n 为数组的长度。

空间复杂度:O(1)。

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        if(prices.size()<1){
            return 0;
        }
        int profit=0;
        int buy=prices[0]+fee;
        for(int i=1;i<prices.size();i++){
            if(prices[i]+fee<buy){
                buy=prices[i]+fee;
            }
            else if(prices[i]>buy){
                profit +=prices[i]-buy;
                buy=prices[i];
            }
        }
        return profit;
    }
};

你可能感兴趣的:(贪心算法,算法,动态规划)