知识的搬运工又来啦
☆*: .。. o(≧▽≦)o .。.:*☆
【传送门==>原文链接:】https://huggingface.co/docs/transformers/autoclass_tutorial
由于存在许多不同的Transformer架构,因此为您的检查点(checkpoint)创建一个可能很具有挑战性。作为Transformers核心理念的一部分,使库易于使用、简单和灵活,AutoClass自动推断并从给定的检查点加载正确的架构。【from_pretrained()】方法允许您快速加载任何架构的预训练模型,因此您无需花费时间和资源从头开始训练模型。生产此类检查点不可知代码意味着,如果您的代码适用于一个检查点,则它将适用于另一个检查点——只要它是为类似的任务进行训练的,即使架构不同。
请记住,架构是指模型的骨架,检查点是给定架构的权重。例如,BERT是一种架构,而bert-base-uncased是一个检查点。模型是一个通用术语,可以表示架构或检查点。
在本教程中,我们可以学习:
- 加载预训练的分词器。
- 加载预训练的图像处理器。
- 加载预训练的特征提取器。
- 加载预训练的处理器。
- 加载预训练模型。
几乎每个NLP任务都始于分词器。分词器将您的输入转换为模型可以处理的格式。
使用AutoTokenizer.from_pretrained()加载分词器:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
然后按照下面所示进行分词:
sequence = "In a hole in the ground there lived a hobbit."
print(tokenizer(sequence))
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
对于视觉任务,图像处理器将图像处理成正确的输入格式。
from transformers import AutoImageProcessor
image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
对于音频任务,特征提取器将音频信号处理成正确的输入格式。
使用AutoFeatureExtractor.from_pretrained()加载特征提取器:
from transformers import AutoFeatureExtractor
feature_extractor = AutoFeatureExtractor.from_pretrained(
"ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
)
多模态任务需要一个处理器来结合两种类型的预处理工具。例如,LayoutLMV2模型需要一个图像处理器来处理图像和一个分词器来处理文本;处理器将两者结合起来。
使用AutoProcessor.from_pretrained()加载处理器:
from transformers import AutoProcessor
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
最后,AutoModelFor类允许您加载给定任务的预训练模型(请参见此处以获取可用任务的完整列表)。例如,使用AutoModelForSequenceClassification.from_pretrained()加载序列分类模型:
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
可以轻松地重复使用相同的检查点,以加载不同任务的架构:
from transformers import AutoModelForTokenClassification
model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
对于PyTorch模型,from_pretrained()方法使用torch.load(),它在内部使用pickle,并已知存在安全问题。一般来说,永远不要加载可能来自不可信源或可能被篡改的模型。针对Hugging Face Hub上托管的公共模型,这种安全风险在一定程度上得到了缓解,因为每次提交时都会对其进行恶意软件扫描。请参阅Hub文档以了解最佳实践,例如使用GPG进行签名提交验证。
TensorFlow和Flax检查点不受影响,并且可以在PyTorch架构中使用from_pretrained方法的from_tf和from_flax参数来加载,以绕过此问题。
通常,我们建议使用AutoTokenizer类和AutoModelFor类来加载预训练模型的实例。这将确保您每次都加载正确的架构。在下一个教程中,学习如何使用新加载的分词器、图像处理器、特征提取器和处理器对数据集进行预处理,以进行微调。
最后,TFAutoModelFor类允许您加载给定任务的预训练模型(请参见此处以获取可用任务的完整列表)。例如,使用TFAutoModelForSequenceClassification.from_pretrained()加载序列分类模型:
from transformers import TFAutoModelForSequenceClassification
model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
可以轻松地重复使用相同的检查点,以加载不同任务的架构:
from transformers import TFAutoModelForTokenClassification
model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
通常,我们建议使用AutoTokenizer类和TFAutoModelFor类来加载预训练模型的实例。这将确保您每次都加载正确的架构。在下一个教程中,学习如何使用新加载的分词器、图像处理器、特征提取器和处理器对数据集进行预处理,以进行微调。