(StackOverflow)使用Huggingface Transformers从磁盘加载预训练模型

问题描述:

根据from_pretrained的文档,我了解到我不必每次都下载预训练向量(权重数据),我可以使用以下语法将它们保存并从磁盘加载:

 - a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
  - (not applicable to all derived classes, deprecated) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``.

- 一个指向包含分词器所需词汇文件的目录的路径,例如使用 :func:`~transformers.PreTrainedTokenizer.save_pretrained` 方法保存的目录,例如:``./my_model_directory/``。
  - (不适用于所有派生类,已弃用)仅当分词器仅需要单个词汇文件(例如Bert,XLNet)时,才适用于指向单个保存的词汇文件的路径或URL,例如:``./my_model_directory/vocab.txt``。 

 

所以,我去了模型中心:

https://huggingface.co/models

我找到了我想要的模型:

https://huggingface.co/bert-base-cased

我从他们提供的链接下载了它:

使用掩码语言建模(MLM)目标在英语语言上预训练的模型。它在这篇论文中被介绍,并在这个代码库中首次发布。该模型区分大小写:它区分英语和English。

存储在这个路径下:

  /my/local/models/cased_L-12_H-768_A-12/

 这个路径下包含

 ./
 ../
 bert_config.json
 bert_model.ckpt.data-00000-of-00001
 bert_model.ckpt.index
 bert_model.ckpt.meta
 vocab.txt

 配置了路径,并加载分词器:

PATH = '/my/local/models/cased_L-12_H-768_A-12/'
  tokenizer = BertTokenizer.from_pretrained(PATH, local_files_only=True)

 结果报错:

>           raise EnvironmentError(msg)
E           OSError: Can't load config for '/my/local/models/cased_L-12_H-768_A-12/'. Make sure that:
E           
E           - '/my/local/models/cased_L-12_H-768_A-12/' is a correct model identifier listed on 'https://huggingface.co/models'
E           
E           - or '/my/local/models/cased_L-12_H-768_A-12/' is the correct path to a directory containing a config.json file

 同样的问题发生在我直接链接json文件时:

  PATH = '/my/local/models/cased_L-12_H-768_A-12/bert_config.json'
  tokenizer = BertTokenizer.from_pretrained(PATH, local_files_only=True)

        if state_dict is None and not from_tf:
            try:
                state_dict = torch.load(resolved_archive_file, map_location="cpu")
            except Exception:
                raise OSError(
>                   "Unable to load weights from pytorch checkpoint file. "
                    "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
                )
E               OSError: Unable to load weights from pytorch checkpoint file. If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True.

 answer

相对路径?绝对路径?

文件相对于您的模型文件夹的位置在哪里? 我认为它必须是相对路径而不是绝对路径。 因此,如果您编写代码的文件位于'my/local/'中,则您的代码应如下所示:

```
PATH = 'models/cased_L-12_H-768_A-12/'
tokenizer = BertTokenizer.from_pretrained(PATH, local_files_only=True)
```

您只需要指定包含所有文件的文件夹,而不是直接指定文件。 我认为这绝对是与路径有关的问题。 尝试更改“斜杠”的样式:'/' vs'\',这些在不同的操作系统中是不同的。 还可以尝试使用“.”,例如./models/cased_L-12_H-768_A-12/等。

推荐【save_pretrained】方法保存文件。

不确定你从哪里获取这些文件。当我检查链接时,我可以下载以下文件:config.json,flax_model.msgpack,modelcard.json,pytorch_model.bin,tf_model.h5,vocab.txt。此外,最好通过tokenizer.save_pretrained('YOURPATH')和model.save_pretrained('YOURPATH')保存文件,而不是直接下载。- cronoik
2020年10月4日21:59

from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig

YOURPATH = 'E:/workspace/Qwen/Qwen-7B-Chat'

name = 'Qwen/Qwen-7B-Chat'
tokenizer = AutoTokenizer.from_pretrained(name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(name, device_map="auto", trust_remote_code=True, bf16=True).eval()
tokenizer.save_pretrained(YOURPATH)
model.save_pretrained(YOURPATH)

你可能感兴趣的:(HuggingFace,Transformers,通意千问大语言模型学习笔记,深度学习,人工智能,语言模型)