- 头歌实训作业 算法设计与分析-动态规划(第1关:0/1背包问题)
Milk夜雨
头歌实训作业算法动态规划
任务描述求解0/1背包问题。问题描述有n个重量分别为{w1,w2,…,wn}的物品,它们的价值分别为{v1,v2,…,vn},给定一个容量为W的背包。设计从这些物品中选取一部分物品放入该背包的方案,每个物品要么选中要么不选中,要求选中的物品不仅能够放到背包中,而且重量和为W,并具有最大的价值。测试说明测试输入:第一行为2个整数,分别表示物品数量n(1≤n≤20)和背包容量W(1≤W≤10000)。
- 使用 Python 和 scikit-learn 实现 KNN 分类:以鸢尾花数据集为例
弥树子
pythonscikit-learn分类
在机器学习的世界里,K-NearestNeighbors(KNN)算法是一种简单而强大的分类方法。它基于一个直观的想法:相似的数据点往往属于同一类别。本文将通过Python的scikit-learn库实现KNN分类,以经典的鸢尾花数据集为例,展示从数据加载到模型评估的完整流程。1.KNN算法简介KNN是一种监督学习算法,主要用于分类和回归任务。它的工作原理非常简单:对于一个新的数据点,算法会查找训
- LLM架构与优化:从理论到实践的关键技术
XianxinMao
人工智能
标题:“LLM架构与优化:从理论到实践的关键技术”文章信息摘要:文章探讨了大型语言模型(LLM)开发与应用中的关键技术,包括Transformer架构、注意力机制、采样技术、Tokenization等基础理论,以及模型部署、应用开发、优化等实践技能。重点分析了预训练、后训练、监督微调(SFT)和偏好对齐(PreferenceAlignment)在提升模型性能中的作用,并对比了直接偏好优化(DPO)
- 图文详解 MapReduce on YARN
Shockang
大数据技术体系大数据mapreduceyarn
前言本文隶属于专栏《1000个问题搞定大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见1000个问题搞定大数据技术体系正文权威版本——《Hadoop权威指南第3版》1.作业提交MRrunJob从RM获取新的作业ID作业客户端检査作业的输出说明,计算输入分片并将作业资源(包括作业JAR、配置和分片信息)复制到HDFS。通过调用R
- SAP关于成本的概念-差异的计算方法-实际成本计算方法
saplakes
#SAP_FICOSAP实际成本FICOCO管理会计生产订单
一、成本的概念标准成本=标准价格*标准数量+作业价格*标准数量计划成本=计划价格*计划数量+作业价格*计划数量实际成本=实际价格*实际数量+作业价格*实际数量目标成本=标准价格*实际数量+作业价格*实际数量注意在SAP中目标成本,是根据生产订单中产品成本评估时的价格,乘以生产订单完工入库量,乘以BOM用量的结果。计划成本,为生产订单计划生产量,乘BOM用量,乘计划生产变式中定义的价格。计划成本,即
- 接口技术-第1次作业
厂里英才
作业接口技术
目录1、接口技术的基本任务是什么?2、接口芯片的编程模型方法是什么?采用编程模型方法对分析与应用微机系统的硬件资源有什么意义?3、什么是接口?阐述接口的功能。4、什么是多总线技术?多总线层次化总线结构主要有哪几个层次?5、如何实现在PCI总线系统中查找一个PCI设备?1、接口技术的基本任务是什么?微机接口的基本任务有两个:一是实现I/O设备与总线的连接;二是连接起来以后,CPU通过接口对I/O设备
- Hadoop学习笔记 --- YARN执行流程与工作原理
杨鑫newlfe
数据仓库大数据挖掘与大数据应用案例YARNHadoop大数据资源调度数据仓库
一、YARN简述首先介绍一下YARN在Hadoop2.0版本引进的资源管理系统,直接从MapReduceV1演化而来(由于引擎的功能缺陷);原因是将MapReduce1中的JobTracker的资源管理和作业调度两个功能分开,分别由ResourceManager和ApplicationMaster进行实现;ResourceManager:负责整个集群的资源管理和调度ApplicationMaste
- 【深入浅出 Yarn 架构与实现】1-1 设计理念与基本架构
大数据王小皮
深入浅出Yarn架构与实现架构hadoop大数据yarnjava
一、Yarn产生的背景Hadoop2之前是由HDFS和MR组成的,HDFS负责存储,MR负责计算。一)MRv1的问题耦合度高:MR中的jobTracker同时负责资源管理和作业控制两个功能,互相制约。可靠性差:管理节点是单机的,有单点故障的问题。资源利用率低:基于slot的资源分配模型。机器会将资源划分成若干相同大小的slot,并划定哪些是mapslot、哪些是reduceslot。无法支持多种计
- 未来趋势系列 篇三:低空经济题材解析和股票梳理
李小白杂货铺
股票技术杂谈低空经济题材解析股票梳理
文章目录系列文章低空经济题材解析空域管理设备起降设施雷达导航飞行员培训无人机直升机eVTOL(含垂直起降型飞行汽车)低空物流低空交通环境检测消防支援气象探测股票梳理系列文章未来趋势系列篇一:AI题材解析和股票梳理未来趋势系列篇二:HBM题材解析和股票梳理低空经济低空经济是政策、技术和自主可控三者共振的新晋的新质生产力代表。低空经济是指以民用有人驾驶和无人驾驶航空器为主导,涵盖载人、载货及其他作业等
- 无人机+固定机巢 ,空地协同作业技术详解
无人机技术圈
无人机技术无人机
无人机与固定机巢结合的空地协同作业技术是现代无人机应用领域的一项重要创新,它结合了无人机的灵活性和固定机巢的保障性,实现了空地一体化的高效作业。以下是对该技术的详细解析:一、技术概述无人机与固定机巢结合的空地协同作业技术,主要是通过无人机搭载各种传感器和任务载荷,在固定机巢的支持下进行起飞、巡逻、监测、数据采集等任务,并通过高速通信技术将数据传输至地面控制站,实现信息的实时共享和协同决策。固定机巢
- 预训练语言模型
Algorithm_Engineer_
基础知识和深度学习语言模型人工智能自然语言处理
一.预训练模型的基本介绍预训练模型是一种在大规模数据上训练而得的模型,通常通过无监督学习或自监督学习的方式进行。在预训练阶段,模型被训练来学习数据的内在表示,而无需标注数据或任务特定的目标函数。这种学习能力使得预训练模型可以捕获数据的复杂结构和特征,并且在后续的特定任务上进行微调,从而提高模型在目标任务上的性能。1.1预训练过程数据收集与处理:收集大规模的数据,并对数据进行预处理,以便模型训练使用
- 【常用bsub指令介绍】使用bsub命令提交作业、开启交互式窗口,在集群服务器上用pdb进行代码调试
凌漪_
集群服务器服务器gpu算力bug
目录1.LSF作业调度系统和服务器集群介绍2.bsub运行作业的两种方式2.1bsub直接提交作业2.2bsub开启交互式窗口3.使用pdb进行代码调试4.更多bsub指令分享1.LSF作业调度系统和服务器集群介绍在一个服务器集群中,有很多的人要使用,却只有很少的GPU。LSF作业调度系统则是对每个用户提交的作业和需要使用的GPU进行调度。一般使用bsub命令来将待运行的作业提交到集群上。用bsu
- 2024国有企业数字化转型的意义和作用是什么?
有颜有货
数字化转型大数据云计算数字化转型
一、当下国有企业数字化转型最新的意义及作用是什么?数字化转型对国有企业具有深远的意义,不仅是企业的内在需求,更是国家经济发展的重要支撑。据研究表明,数字化相关技术可为企业提升约60%的作业效率,降低20%的人力成本,提升50%的管理效率。1、提升效率,降低成本:数字化转型将使国有企业的生产管理更加精细化和智能化,大大提升企业的运营效率,降低生产成本。2、加强创新,推动发展:数字化转型为国有企业注入
- 基于python+django的宠物商店-宠物管理系统源码文档
冷琴1996
Python系统设计pythondjango宠物
该系统是基于python+django开发的宠物商店-宠物管理系统。是给师妹开发的课程作业。现将源码开放给大家。大家学习过程中,如遇问题可以在github咨询作者。演示地址前台地址:http://pet.gitapp.cn后台地址:http://pet.gitapp.cn/admin后台管理帐号:用户名:admin123密码:admin123源码地址https://github.com/geeee
- C++课设通讯录管理系统(类与对象)
小学生Y同学
此代码为本人课设作业,小白一枚,还望大佬指正。题目:通讯录管理系统以本班同学的具体数据为背景,设计一个本班同学通讯录。1.设计要求:(1)学生通讯录基本信息包括:学号、姓名、性别、年龄、电话号码、家庭地址、备注等。(2)使用类和对象的概念实现程序设计。(3)将学生通讯录基本信息保存到文件,所有操作都针对文件中的数据。(4)程序算法说明清晰,理论分析与计算正确,运行情况良好,实验测试数据无误,容错性
- 顶刊论文:一种用于病理学的多模态全切片基础模型 TITAN
思陌Ai算法定制
人工智能机器学习ai深度学习
“MultimodalWholeSlideFoundationModelforPathology”提出了一种用于病理学的多模态全切片基础模型TITAN,通过在大量组织切片图像(WSIs)上的自监督学习和视觉语言对齐预训练,TITAN能生成强大的通用切片表示,在多种临床任务中表现优异,为病理学研究和临床诊断提供了有力工具。1.**研究背景**-计算病理学中基础模型发展迅速,但将基于组织病理图像感兴趣
- 窄带物联网技术(NB-IoT)在智慧消防建设方面的应用
123567909762
物联网安全运维
安科瑞汪国琴引言据统计,仅2019年我国共接报火灾23.3万起,造成1335人死亡、837人受伤、直接财产损失达36.12亿元,严重的人员伤亡和财产损失对社会稳定和国民经济的健康、可持续发展造成了不良影响,加强社会火灾防控工作成为当务之急。现有的防火监督、灭火救援和火灾风险管控技术手段相对滞后,已不能适应经济和社会的高速发展以及现代化、信息化的管理需求,加之消防安全主体责任不能有效落实,消防安全管
- 探索云端阅读新纪元:云借阅图书管理系统
翁莹灵Ernest
探索云端阅读新纪元:云借阅图书管理系统【下载地址】云借阅图书管理系统-JavaWeb结课作业本项目是一个基于JavaWeb的结课作业,名为“云借阅图书管理系统”。该系统旨在提供一个在线的图书借阅平台,方便用户进行图书的借阅、归还、查询等操作。通过该系统,用户可以轻松管理自己的借阅记录,图书馆管理员也可以方便地管理图书库存和借阅情况项目地址:https://gitcode.com/open-sour
- Direct Preference Optimization (DPO): 一种无需强化学习的语言模型偏好优化方法
Yuleave
论文学习语言模型人工智能自然语言处理
论文地址:https://arxiv.org/pdf/2305.182901.背景与挑战近年来,大规模无监督语言模型(LM)在知识获取和推理能力方面取得了显著进展,但如何精确控制其行为仍是一个难题。现有的方法通常通过**强化学习从人类反馈(RLHF)**来引导模型行为,但RLHF存在以下问题:复杂性高:RLHF需要先训练一个奖励模型来反映人类偏好,然后使用强化学习来微调语言模型,使其在最大化奖励的
- Python | 基于支持向量机(SVM)的图像分类案例
python收藏家
python机器学习python机器学习
支持向量机(SVM)是一种监督机器学习算法,可用于分类和回归任务。在本文中,我们将重点关注使用SVM进行图像分类。当计算机处理图像时,它将其视为二维像素阵列。数组的大小对应于图像的分辨率,例如,如果图像是200像素宽和200像素高,则数组的尺寸为200x200x3。前两个维度分别表示图像的宽度和高度,而第三个维度表示RGB颜色通道。数组中的值范围为0到255,表示每个点处像素的强度。为了使用SVM
- 性能优化案例:通过合理设置spark.default.parallelism参数的值来优化PySpark程序的性能
weixin_30777913
大数据sparkpython
在PySpark中,spark.default.parallelism是一个关键参数,直接影响作业的并行度和资源利用率。通过合理设置spark.default.parallelism并结合数据特征调整,可显著提升PySpark作业的并行效率和资源利用率。建议在开发和生产环境中进行多轮基准测试以确定最优值。以下是如何通过调整此参数优化性能的详细说明,结合案例和最佳实践:1.参数作用与问题场景参数意义
- 《Spark大数据分析与内存计算》——第三章
阿万古
课程作业spark数据分析大数据
第三章作业及答案快捷查找:Ctrl+F在搜索框中输入题目一.单选题(共17题)1.(单选题)并不是所有企业都能自己产生数据,从而用于决策辅助,而更多的互联网企业如电商等大部分是要靠什么来抓取互联网数据进行分析A.HadoopB.pythonC.SparkD.网路爬虫正确答案:D:网路爬虫;2.(单选题)什么负责即席查询的应用A.MLlibB.SparkStreamingC.GraphXD.Spar
- 软件工程 案例分析作业
SoftwareTeacher
编程语言人工智能javapython大数据
现代软件工程构建之法作业https://bbs.csdn.net/forums/SoftwareEngineering?typeId=1723软件工程作业案例分析很多同学有疑惑:软件工程课是否就是枯燥的理论课?或者是几个牛人拼命写代码,其他人抱大腿的课?要不然就是学习一个程序语言,练习某个框架,搞一个职业培训的课?都不对!软件工程有理论,有实践,更重要的是分析,思辨,总结。在课程中,同学们自己组织
- 关于网络标准协会
hailuoing
1.IETF互联网工程任务组(InternetEngineeringTaskForce,IETF)负责互联网标准的开发和推动IETF由互联网结构委员会(InternetArchitectureBoard,IAB)监督,IAB向互联网协会(InternetSociety,ISOC)负责。现任IETF主席是BrianCarpenter。相关机构:互联网协会(ISOC-InternetSociety)I
- Kmeans与KMedoids聚类对比以及python实现
呵呵爱吃菜
kmeans聚类python
在机器学习领域,聚类算法是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。K-Means和K-Medoids是两种经典的聚类算法,它们都基于划分的思想,但在具体实现和应用场景上存在一些差异。一、算法原理1.K-Means:中心点选择:K-Means算法通过计算簇内所有样本的均值来确定中心点(centroid)。距离度量:通常
- 图像分类与识别的自组织特征映射网络实践
无声远望
本文还有配套的精品资源,点击获取简介:自组织特征映射网络(SOFM)是一种无监督学习模型,适用于图像处理中的预处理、特征提取和分类识别。通过在MATLAB中实现SOFM,可以进行数据预处理、特征提取、网络训练、分类与识别以及优化评估。本内容涵盖了SOFM网络的应用步骤、训练过程、参数调整和性能评估,旨在提供图像处理问题的解决方案。1.自组织特征映射网络简介1.1自组织特征映射网络概述自组织特征映射
- abaqus python提取楼层剪力_用Python提取ABAQUS中节点集合的反力
weixin_39963523
abaquspython提取楼层剪力
用Python提取ABAQUS中节点集合的反力注:节点反力可以通过PATH路径来提取!!!(还是较为方便)1>>>fromodbAccessimport*2>>>myodb=openOdb('Job-1.odb')#该ODB文件用myodb表示此处的job-1:表示第一个作业名称。上图则job-1的位置就应该用beam-1来代替3>>>printmyodb.rootAssembly.nodeSet
- python鸢尾花数据集knn_【python+机器学习1】python 实现 KNN
weixin_39629269
python鸢尾花数据集knn
欢迎关注哈希大数据微信公众号【哈希大数据】1KNN算法基本介绍K-NearestNeighbor(k最邻近分类算法),简称KNN,是最简单的一种有监督的机器学习算法。也是一种懒惰学习算法,即开始训练仅仅是保存所有样本集的信息,直到测试样本到达才开始进行分类决策。KNN算法的核心思想:要想确定测试样本属于哪一类,就先寻找所有训练样本中与该测试样本“距离”最近的前K个样本,然后判断这K个样本中大部分所
- Day05:C语言学习作业
老薛爱吃大西瓜
c语言学习算法开发语言
考虑到多重循环对程序效率的影响,以下哪种实现效率较高?为什么?(a)循环次数大的放在外层,循环次数小的放在内层;(b)循环次数小的放在外层,循环次数大的放在内层;答案:循环小的在外层效率高,因为CPU中会对循环次数进行缓存,当循环多后CPU需要进行多次缓存,减少效率请简述以下两个for循环的优缺点。(1)、for(i=0;i#defineN4voidmain(){inti;intx1=1,x2=2
- LeetCode刷题day18——贪心
Jessie_waverider
leetcode算法贪心算法
LeetCode刷题day18——贪心135.分发糖果分析:406.根据身高重建队列分析:`for(auto&p:people)`昨天写了一道,今天写了一道,都有思路,却不能全整对。昨天和小伙伴聊天,说是因为最近作业多,昨天没打题,负罪感满满,养成习惯了都。135.分发糖果n个孩子站成一排。给你一个整数数组ratings表示每个孩子的评分。你需要按照以下要求,给这些孩子分发糖果:每个孩子至少分配到
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc