- Kafka 消费者组再平衡优化实践指南
一、Kafkarebalance原理与影响原理消费者通过subscribe(topics)向协调器(GroupCoordinator)注册组成员。协调器根据partition.assignment.strategy(默认StickyAssignor)自动分配各消费者的分区列表。每次成员加入/离开,都会经历:REVOKE:撤销旧的分区分配ASSIGN:重新分配所有分区期间所有消费者的poll()会被
- 【面试题】为什么kafka的吞吐量这么高
oraen
面试系列kafka分布式
我们总结一下为什么kafka的吞吐量高核心:顺序写+零拷贝+批处理一数据模型简单+顺序读写磁盘1kafka的数据存储本质上使用的是Append-only日志模型,数据写入和读取是顺序的,不需要复杂索引或随机写,大大简化了写路径,2消息以顺序追加方式写入磁盘,避免了随机写,而且顺序写入能够更高效地配合操作系统的页缓存,进一步提升写的性能。3消息的消费也是顺序读取的,顺序读取硬盘数据再配合内存映射大大
- Spring for kafka系列——1、快速浏览
虾条_花吹雪
SpringforApacheKafkaSpringkafka
先决条件:您必须安装并运行ApacheKafka。然后,您必须将SpringforApacheKafka(SpringKafka)JAR及其所有依赖项放在类路径上。最简单的方法是在构建工具中声明依赖关系。如果您没有使用SpringBoot,请在项目中将Springkafka-jar声明为依赖项。org.springframework.kafkaspring-kafka3.3.7使用SpringBo
- 6,Receiving Messages:@KafkaListener Annotation
@KafkaListener注释用于将bean方法指定为侦听器容器的侦听器。bean被包装在一个配置了各种功能的MessagingMessageListenerAdapter中,例如在必要时转换数据以匹配方法参数的转换器。您可以使用#{…}或属性占位符(${…})使用SpEL配置注释上的大多数属性。有关更多信息,请参阅Javadoc。RecordListeners@KafkaListener注释为
- 2、Connecting to Kafka
虾条_花吹雪
SpringforApacheKafkakafka分布式ai
KafkaAdmin-请参阅配置主题ProducerFactory-请参阅发送消息ConsumerFactory-请参阅接收消息从2.5版本开始,每个版本都扩展了KafkaResourceFactory。这允许在运行时通过向引导服务器的配置中添加Supplier来更改引导服务器:setBootstrapServersSupplier(()->…)。所有新连接都将调用此命令以获取服务器列表。消费者和
- Kafka-python 核心 API 深度解析:BrokerConnection 与 ClusterMetadata 的全方位指南
佑瞻
python工程化kafkapython分布式
在Kafka应用开发中,我们时常会面临连接管理混乱、元数据获取不及时等问题,这些问题的根源往往在于对底层API的理解不够深入。今天我们将聚焦kafka-python客户端中两个核心类——BrokerConnection和ClusterMetadata,通过剖析其核心功能与应用场景,帮助大家建立系统化的Kafka连接与元数据管理知识体系。BrokerConnection:Kafka连接管理的中枢神经
- KafkaAdminClient 技术详解:Python 操作 Kafka 集群的管理接口
佑瞻
python工程化pythonkafka
一、KafkaAdminClient基础概念KafkaAdminClient是kafka-python客户端提供的集群管理类,用于通过编程方式管理Kafka集群资源。其核心定位是为开发者提供一套标准化接口,实现对主题、分区、ACL、消费者组等资源的全生命周期管理。核心特性说明:接口定位:专门用于集群资源管理,区别于KafkaConsumer/KafkaProducer的数据读写功能版本要求:要求B
- 深入解析Spring Boot与Kafka集成:构建高效消息驱动应用
深入解析SpringBoot与Kafka集成:构建高效消息驱动应用引言在现代分布式系统中,消息队列技术扮演着至关重要的角色。ApacheKafka作为一款高性能、分布式的消息队列系统,被广泛应用于实时数据处理、日志收集、事件驱动架构等场景。本文将深入探讨如何在SpringBoot应用中集成Kafka,构建高效的消息驱动应用。1.Kafka简介ApacheKafka是一个分布式流处理平台,具有高吞吐
- 深入解析Spring Boot与Kafka集成:构建高效消息驱动微服务
Uranus^
JavaSpringBootKafka微服务消息队列
深入解析SpringBoot与Kafka集成:构建高效消息驱动微服务引言在现代微服务架构中,消息队列扮演着至关重要的角色,尤其是在处理高并发、异步通信和解耦系统组件时。ApacheKafka作为一款高性能的分布式消息队列系统,被广泛应用于实时数据处理和事件驱动架构中。本文将深入探讨如何在SpringBoot应用中集成Kafka,构建高效的消息驱动微服务。1.Kafka简介ApacheKafka是一
- 深入解析Spring Boot与Kafka集成:构建高性能消息驱动应用
Uranus^
JavaSpringBootKafka消息队列分布式系统
深入解析SpringBoot与Kafka集成:构建高性能消息驱动应用引言在现代分布式系统中,消息队列是实现异步通信和解耦的关键组件之一。ApacheKafka作为一种高性能、分布式的消息队列系统,被广泛应用于大数据处理、实时流处理以及事件驱动的架构中。本文将深入探讨如何在SpringBoot应用中集成Kafka,构建高性能的消息驱动应用。Kafka简介ApacheKafka是一个分布式流处理平台,
- Kafka的消费消息是如何传递的?
java1234_小锋
javakafka分布式
大家好,我是锋哥。今天分享关于【Kafka的消费消息是如何传递的?】面试题。希望对大家有帮助;Kafka的消费消息是如何传递的?超硬核AI学习资料,现在永久免费了!在Kafka中,消息的消费传递是通过**消费者(Consumer)和消费者组(ConsumerGroup)**的机制来实现的。以下是Kafka消息消费传递的详细过程:1.Kafka的基本结构Kafka由生产者(Producer)、消费者
- 【Note】《Kafka: The Definitive Guide》第6章:Kafka 的可靠数据投递机制,理解消息系统中的交付语义
CodeWithMe
中间件读书笔记kafka分布式
《Kafka:TheDefinitiveGuide》第6章:Kafka的可靠数据投递机制,理解消息系统中的交付语义在构建分布式系统时,数据是否成功送达?是否会丢失?是否会重复?这些都是架构师必须面对的核心问题。Kafka被广泛应用于金融、监控、日志、交易、IoT等对可靠性要求极高的场景,那么它是如何保障消息交付可靠性的?本章将深入解析Kafka的消息投递语义、失败处理机制、幂等性与事务支持,从而理
- 【Note】《Kafka: The Definitive Guide》 第5章:深入 Kafka 内部结构,理解分布式日志系统的核心奥秘
《Kafka:TheDefinitiveGuide》第5章:深入Kafka内部结构,理解分布式日志系统的核心奥秘ApacheKafka在表面上看似只是一个“分布式消息队列”,但其背后的存储架构、分区机制、复制策略与高性能设计,才是它在千万级TPS场景中立足的根本。一、Kafka的核心逻辑结构Kafka是一个分布式日志服务(distributedcommitlog),核心概念有以下几类:TopicK
- 【Note】《Kafka: The Definitive Guide》第三章: Kafka 生产者深入解析:如何高效写入 Kafka 消息队列
CodeWithMe
读书笔记中间件kafka分布式
《Kafka:TheDefinitiveGuide》第三章:Kafka生产者深入解析:如何高效写入Kafka消息队列Kafka已经成为现代分布式系统中不可或缺的核心组件,尤其是在微服务、事件驱动架构与实时流处理领域。作为Kafka使用的第一步,生产者(Producer)负责将消息写入Kafka,这个过程背后有哪些关键机制?如何实现高可靠、高性能的写入?什么是KafkaProducer?KafkaP
- Kafka系列之:不删除Kafka Topic,清理Kafka Topic中的数据
快乐骑行^_^
KafkaKafka系列不删除KafkaTopic清理KafkaTopic数据
Kafka系列之:不删除KafkaTopic,清理KafkaTopic中的数据一、需求二、Java删除Topic中数据三、python删除Topic中数据一、需求需要清理topic中的数据但是不能通过删除topic删除数据,则采取基于topic的offset删除topic中的数据二、Java删除Topic中数据HashMapdeleteRecords=newHashMap<>();这一行创建了一个
- Kafka Controller 元数据解析与故障恢复实战指南
磐基Stack专业服务团队
Kafkakafkalinq分布式
#作者:张桐瑞文章目录1生产案例:Controller选举在故障恢复中的关键作用1.1问题背景1.2核心操作原理:2Controller元数据全景:从ZooKeeper到内存的数据镜像2.1元数据核心载体:ControllerContext类2.2核心元数据深度解析1生产案例:Controller选举在故障恢复中的关键作用1.1问题背景某Kafka集群部分核心主题分区一直处于“不可用”状态,通过k
- Kafka
小熊哥^--^
kafka分布式
一、什么是Kafka?Kafka的主要用途?Kafka是一个分布式流处理平台,是Apache的一个顶级项目,它被设计用于高吞吐量,分布式、持久性的数据流处理。Kafka实现了一套非常高效的一种发布订阅模型,应用场景非常广泛,比如日志聚合(收集日志)、数据流处理、数据仓库集成(传输数据到数据仓库)、应用程序集成(作为消息中间件来实现异步通信)、流媒体处理(列如实时监控,事件驱动的应用程序)二、top
- 3、Configuring Topics
如果您在应用程序上下文中定义了KafkaAdminbean,它可以自动向代理添加主题。为此,您可以将每个主题的NewTopic@Bean添加到应用程序上下文中。2.3版本引入了一个新的类TopicBuilder,使创建此类bean更加方便。以下示例显示了如何执行此操作:@BeanpublicKafkaAdminadmin(){Mapconfigs=newHashMap,用于确定是否应考虑创建或修改
- Zookeeper异常ConnectionLossException: KeeperErrorCode = ConnectionLoss for / 问题解决大全
takmehand
Javajavazookeeper
zookeeper报ConnectionLossException:KeeperErrorCode=ConnectionLossfor异常我的开发环境是Windows开发zookeeper客户端程序,zookeeper集群安装在本地虚拟机上centos7经过自己踩坑和查找博客,发现报此异常有三种原因一是:zookeeper服务没有启动,这是最low的错误二是:centos防火墙未关闭,导致连接不上
- 【Note】《Kafka: The Definitive Guide》 第二章 Installing Kafka:Kafka 安装与运行
《Kafka:TheDefinitiveGuide》第二章InstallingKafka:Kafka安装与运行本章核心目标是教读者如何在本地搭建Kafka,包括依赖安装、启动服务、测试运行等操作。一、Kafka的依赖与基本结构1.Kafka的核心组成Kafka并不是一个单独运行的进程,它依赖以下两个核心组件:组件作用ZooKeeperKafka用于存储元数据(如broker注册信息、control
- Kafka “假死“现象深度解析与解决方案
一、什么是Kafka假死现象?Kafka假死(也称为"僵死"或"挂起")是指Kafka集群或Broker在表面上进程仍在运行,但实际上已经停止响应或处理能力极度下降的状态。典型表现包括:生产者消息无法写入(超时)消费者无法拉取消息管理API无响应监控指标停止更新但进程仍在系统进程中可见二、假死的根本原因分析1.磁盘I/O瓶颈典型场景:磁盘写满(特别是日志目录)磁盘性能达到瓶颈(RAID卡缓存策略不
- MySQL CDC与Kafka整合指南:构建实时数据管道的完整方案
亲爱的非洲野猪
mysqlkafka数据库
一、引言:现代数据架构的实时化需求在数字化转型浪潮中,实时数据已成为企业的核心资产。传统批处理ETL(每天T+1)已无法满足以下场景需求:实时风险监控(金融交易)即时个性化推荐(电商)物联网设备状态同步微服务间数据一致性本文将深入探讨如何通过MySQLCDC与Kafka的整合,构建高效可靠的实时数据管道。二、技术选型:三大CDC工具深度对比功能矩阵比较特性DebeziumCanalMaxWell多
- Kafka消费者分区分配机制与生产环境配置指南
引言在分布式系统中,Kafka作为高性能消息队列被广泛应用。本文将深入探讨Kafka消费者的分区分配机制,分析不同分配策略的优劣,并提供生产环境中的最佳配置实践。我们还将详细解析消费者常见问题的排查方法,特别是消费者未分配到分区的情况。一、Kafka消费者分区分配机制1.1基础分配原则Kafka通过消费者组(ConsumerGroup)机制实现消息的并行处理。核心规则包括:消费者组隔离:不同消费者
- 利用已有的 PostgreSQL 和 ZooKeeper 服务,启动dolphinscheduler-standalone-server3.1.9 镜像
云游
大数据平台zookeeperdockerpostgresql工作流任务调度
ApacheDolphinScheduler是一个分布式易扩展的可视化DAG工作流任务调度开源系统。适用于企业级场景,提供了一个可视化操作任务、工作流和全生命周期数据处理过程的解决方案。ApacheDolphinScheduler旨在解决复杂的大数据任务依赖关系,并为应用程序提供数据和各种OPS编排中的关系。解决数据研发ETL依赖错综复杂,无法监控任务健康状态的问题。DolphinSchedule
- 数据分析全流程:从收集到可视化的高效实战
晨曦543210
python
1.数据收集来源:数据库、API、传感器、日志文件、社交媒体、问卷调查等。工具:Python(requests、Scrapy)、SQL、Excel、Kafka(实时流数据)。2.数据清洗处理缺失、重复、错误或不一致的数据:缺失值:删除、填充(均值/中位数/众数)、插值或预测。异常值:使用箱线图、Z-score或IQR方法检测并处理。格式标准化:统一日期、单位、文本格式(如大小写、去除空格)。去重:
- Golang 与 Kafka 的协同:优化消息处理流程
Golang编程笔记
golangkafkalinqai
Golang与Kafka的协同:优化消息处理流程关键词:Golang、Kafka、消息队列、并发处理、性能优化、消费者组、异步通信摘要:本文将带你探索如何用Golang的“轻量级并发魔法”与Kafka的“高吞吐量消息引擎”协同工作,优化消息处理流程。我们会从基础概念到实战案例,用“快递站分包裹”“餐厅传菜”等生活场景类比,一步步拆解技术细节,最终掌握如何让这对“黄金组合”高效处理百万级消息。背景介
- 2025年Java后端岗互联网大厂技术场景题的总结(附100w字面试题)
小凡敲代码
javajava后端java面试Java面试题互联网大厂求职Java场景题
一、高并发与分布式系统设计1.百万级QPS秒杀系统问题:如何设计支持瞬时高并发的秒杀系统?解决方案:Redis预减库存:使用Lua脚本保证原子性操作,防止超卖。异步下单:通过MQ(如Kafka/RocketMQ)削峰,降低数据库压力。限流降级:Sentinel/Nginx限流,防止恶意请求。热点数据隔离:独立Redis集群存储秒杀商品数据。2.分布式事务一致性问题:跨服务下单如何保证数据一致性?方
- 25年最新Java后端社招场景项目题总结!(附100w字面试题)
小凡敲代码
javajava面试Java面试题Java场景题程序员互联网大厂计算机
一、高并发与分布式系统设计百万级QPS秒杀系统核心问题:如何解决超卖、库存一致性、高并发请求?技术方案:Redis预减库存+异步扣减(Kafka/RocketMQ)分布式锁(Redisson)或乐观锁(CAS)限流策略(Nginx/Sentinel)扩展:热点数据隔离(独立Redis集群)、风控防刷(IP限流、验证码)。分布式文件存储系统(类似GFS)需求:支持海量文件存储、高可用、快速检索。关键
- RPC--zookeeper服务提供类
ZKServiceProviderImpl实现类:下面三个属性,第一个serviceMap,key是服务名称,value是Object也就是服务对象,用于快速查找服务实例第二个registeredService,是已经注册的服务名称,防止重复注册服务第三个serviceRegistry是一个服务注册组件,负责将服务元数据写入Zookeeper接口方法:添加服务、获取服务、发布服务1、addServ
- 使用canal同步mysql增量数据至rocketmq
使用canal同步mysql增量数据至rocketmq组件版本canal1.1.5rocketmq4.9.2mysql5.7zk3.5.6canal使用参考地址:https://github.com/alibaba/canal主要配置如下:canal.properties:#tcp,kafka,rocketMQ,rabbitMQcanal.serverMode=rocketMQ#数据库名称cana
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比