- 深入理解 MultiQueryRetriever:提升向量数据库检索效果的强大工具
nseejrukjhad
数据库python
深入理解MultiQueryRetriever:提升向量数据库检索效果的强大工具引言在人工智能和自然语言处理领域,高效准确的信息检索一直是一个关键挑战。传统的基于距离的向量数据库检索方法虽然广泛应用,但仍存在一些局限性。本文将介绍一种创新的解决方案:MultiQueryRetriever,它通过自动生成多个查询视角来增强检索效果,提高结果的相关性和多样性。MultiQueryRetriever的工
- FlagEmbedding
吉小雨
python库python
FlagEmbedding教程FlagEmbedding是一个用于生成文本嵌入(textembeddings)的库,适合处理自然语言处理(NLP)中的各种任务。嵌入(embeddings)是将文本表示为连续向量,能够捕捉语义上的相似性,常用于文本分类、聚类、信息检索等场景。官方文档链接:FlagEmbedding官方GitHub一、FlagEmbedding库概述1.1什么是FlagEmbeddi
- 基于深度学习的多模态信息检索
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的多模态信息检索(MultimodalInformationRetrieval,MMIR)是指利用深度学习技术,从包含多种模态(如文本、图像、视频、音频等)的数据集中检索出满足用户查询意图的相关信息。这种方法不仅可以处理单一模态的数据,还可以在多种模态之间建立关联,从而更准确地满足用户需求。1.多模态信息检索的挑战异构数据表示:多模态数据通常具有不同的特征和表示形式(如文本的词嵌入与图
- 计算机网络笔记分享(第六章 应用层)
寒页_
计算机网络计算机网络笔记
文章目录六、应用层6.1域名系统DNS解析的两种查询方式6.2文件传送协议FTP简单传输协议TFTP6.3远程终端协议TELNET6.4万维网WWW统一资源定位符URL超文本传输协议HTTP万维网的文档HTML万维网的信息检索系统博客和微博社交网站6.5电子邮件6.6动态主机配置协议DHCP6.7简单网络管理协议SNMP6.8应用进程跨越网络的通信几种常用的系统调用6.9P2P应用介绍学习计算机网
- 德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第十一周) - 自然语言处理扩展研究
Encarta1993
自然语言处理自然语言处理人工智能
自然语言处理扩展研究1.多语言研究2.语言锚定3.伦理问题1.多语言研究多语言(Multilinguality)是NLP的一个重要研究方向,旨在开发能够处理多种语言的模型和算法。由于不同语言在语法、词汇和语义结构上存在差异,这成为一个复杂且具有挑战性的研究领域。多语言性的研究促进了机器翻译、跨语言信息检索和多语言对话系统等应用的发展。以下是多语言的几个主要研究方向和重要技术:多语言模型的构建,开发
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 爬取微博热搜榜
带刺的厚崽
python数据挖掘开发语言
201911081102汤昕宇现代信息检索导论实验一程序运行的截图:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GimpWjCB-1639531088565)(程序运行截图.png)]当时微博热搜的截图[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lDXRgrxa-1639531088568)(微博热搜截图.png)]对应的CSV截
- 使用DuckDuckGo搜索API进行智能信息检索:实用指南与最佳实践
qq_37836323
java前端服务器python
使用DuckDuckGo搜索API进行智能信息检索:实用指南与最佳实践1.引言在当今信息爆炸的时代,快速准确地获取所需信息变得越来越重要。DuckDuckGo作为一个注重隐私的搜索引擎,不仅为普通用户提供了优质的搜索服务,还为开发者提供了强大的搜索API。本文将深入探讨如何利用DuckDuckGo搜索API进行智能信息检索,并提供实用的代码示例和最佳实践。2.DuckDuckGo搜索API概述Du
- GitHub每周最火火火项目(8.26-9.1)
FutureUniant
Github周推github音视频人工智能计算机视觉ai
项目名称:Cinnamon/kotaemon项目介绍:kotaemon是一个基于开源RAG(检索增强生成)的工具,旨在实现与文档的聊天交互。它为用户提供了一种便捷的方式来与自己的文档进行对话,通过检索文档中的信息来回答用户的问题。这使得用户能够更高效地获取文档中的知识,提高信息检索和利用的效率。项目地址:https://github.com/Cinnamon/kotaemon项目名称:frappe
- 国开(电大)2024秋《文献检索与论文写作》综合练习2
电大题园(1)
学习方法经验分享笔记
国开(电大)2024秋《文献检索与论文写作》综合练习2一、单选题(14题)1.什么数据库为用户提供深入到图书章节和内容的全文检索(C)A、知网B、万方C、读秀知识库D、维普解析:“读秀”是由海量全文数据及资料基本信息组成的超大型数据库,为用户提供深入到图书章节和内容的全文检索。2.信息检索根据检索对象不同,一般分为:(D)A、二次检索、高级检索B、分类检索、主题检索C、计算机检索、手工检索D、数据
- 偏见的亮点:认知偏见如何增强推荐系统
量子位AI
人工智能机器学习
认知偏见,曾被视为人类决策过程中的缺陷,现在被认为对学习和决策有潜在的积极影响。然而,在机器学习中,尤其是在搜索和排序系统中,认知偏见的研究仍需改进。尽管有大量研究集中在探讨这些偏见如何影响模型训练和机器行为的道德性,但信息检索领域大多关注于检测偏见及其对搜索行为的影响。这在利用这些认知偏见来增强检索算法方面带来了挑战,这一领域尚未广泛探讨,对研究者而言提供了机遇和挑战。现有的一些方法,如推荐系统
- 每天一个数据分析题(五百二十一)- 词袋模型
跟着紫枫学姐学CDA
数据分析题库数据分析
词袋模型(英语:Bag-of-wordsmodel)是个在自然语言处理和信息检索(IR)下被简化的表达模型。以下关于词袋模型(BagofWord,BoW)的说法正确的是?A.将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个词语都是独立的B.词袋模型只能应用在文件分类C.CBOW是词袋模型的一种D.GloVe模型是词袋模型的一种数据分析认证考试介绍:点击进入数据分析考试大纲下载题目来源于C
- 平均精度(Average Precision,AP)以及AP50、AP75、APs、APm、APl、Box AP、Mask AP等不同阈值和细分类别的评估指标说明
fydw_715
深度学习基础分类数据挖掘人工智能
平均精度(AveragePrecision,AP)是信息检索领域和机器学习评价指标中常用的一个衡量方法,特别广泛用于目标检测任务。它在评估模型的表现时结合了准确率(Precision)和召回率(Recall),为我们提供一个综合性的评估指标。关键概念Precision(准确率):精确率表示在模型预测为正例的所有样本中,实际上为正例的比例。它的计算公式为:Precision=TruePositive
- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- WeKnow-RAG:智能自适应的检索增强生成方法
步子哥
人工智能
在当今快速发展的人工智能领域,检索增强生成(Retrieval-AugmentedGeneration,RAG)方法逐渐成为一种新兴的解决方案。CobusGreyling在他最新的文章中深入探讨了WeKnow-RAG,这一方法通过结合知识图谱和网络搜索技术,极大地提升了大型语言模型(LLMs)在复杂查询中的表现。知识图谱的力量知识图谱(KnowledgeGraphs,KGs)作为信息检索的重要工具
- ChatGPT 3.5/4.0简单使用手册
老童聊AI
明哥陪你学Pythonchatgpt
ChatGPT3.5/4.0是一种先进的人工智能聊天机器人,能够理解和生成自然语言文本,为用户提供信息检索、问题解答、语言翻译等服务。系统要求操作系统:无特定要求,支持主流操作系统。网络连接:需要稳定的网络连接来使用在线服务。安装与注册访问ChatGPT官方网站或下载相应的应用程序。创建账户:根据网站或应用程序的指示完成注册流程。登录:使用注册的账户信息登录。备注:因为国内环境原因,所以我们不得以
- 缓存与数据库的数据一致性解决方案分析
Do&Feel
Java缓存数据库java
在现代应用中,缓存技术的使用广泛且至关重要,主要是为了提高数据访问速度和优化系统整体性能。缓存通过在内存或更快速的存储系统中存储经常访问的数据副本,使得数据检索变得迅速,从而避免了每次请求都需要从较慢的主存储(如硬盘或远程数据库)中读取数据的延迟。这种技术特别适用于读取操作远多于写入操作的场景,如网页浏览、内容分发网络(CDN)和大规模的信息检索系统等。缓存的实现方式多样,包括但不限于内存缓存、分
- 国产智能搜索MindSearch∶ 能够在不到3分钟内收集并整合300多页相关信息?
百态老人
人工智能笔记
MindSearch是一款由上海人工智能实验室推出的国产智能搜索工具,具有强大的自然语言处理和机器学习能力,旨在提供高效、精准的信息检索服务。它能够通过自然语言查询快速在各种文件格式(如PDF、DOCX、TXT)中找到所需信息,并利用人工智能技术提供即时答案和相关搜索结果。MindSearch不仅是一个独立的搜索引擎平台,还提供了一个开源的AI搜索引擎框架,用户可以使用闭源或开源的大语言模型(LL
- 赠书 | 李航老师的蓝皮书
茗创科技
赠书活动统计学习方法“统计机器学习方法是实现智能化目标的最有效的手段,统计机器学习是各种智能性处理研究领域中的核心技术,并且在这些领域的发展及应用中起着决定性的作用。”作者简介李航,日本京都大学电气电子工程系毕业,日本东京大学计算机科学博士。北京大学、南京大学客座教授,IEEE会士,ACM杰出科学家,CCF高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。曾出版过三部学术专著
- 什么是分布式搜索引擎
罗彬桦
分布式搜索引擎搜索引擎分布式
什么是分布式搜索引擎搜索引擎所谓搜索引擎,就是根据用户需求与一定算法,运用特定策略从互联网检索出制定信息反馈给用户的一门检索技术。搜索引擎依托于多种技术,如网络爬虫技术、检索排序技术、网页处理技术、大数据处理技术、自然语言处理技术等,为信息检索用户提供快速、高相关性的信息服务。搜索引擎技术的核心模块一般包括爬虫、索引、检索和排序等,同时可添加其他一系列辅助模块,以为用户创造更好的网络使用环境。分布
- 自然语言处理(NLP)技术的概念及优势
刘小董
学习心得自然语言处理
自然语言处理(NLP)是人工智能领域的一个重要分支,其目标是使计算机能够理解、处理和生成人类自然语言的形式和含义。NLP技术的优势包括:实现人机交互:NLP技术可以使计算机与人类之间实现自然的语言交互,使人们可以通过语音识别、语义理解等方式与计算机进行交流。大规模文本处理:NLP技术可以对大规模文本进行自动化处理和分析,提取关键信息和知识,从而实现文本分类、情感分析、信息检索等任务。自动化翻译:N
- 《倒排索引》
刚满十八工地搬砖
数据结构
1、了解倒排索引的基本概念1.1、倒排索引是什么倒排索引是一种用于全文搜索的数据结构,它将文档中的每个单词映射到包含该单词的所有文档的列表中,然后用该列表替换单词。因此,倒排索引在文本搜索和信息检索中广泛应用,如搜索引擎、网站搜索、文本分类等场景中。具体来说,一个倒排索引包含一个词语词典和每个词语对应的倒排列表。倒排列表中记录了包含该词语的所有文档的编号、词频等信息。这让我们能够在O(1)的时间内
- 如何选择知识图谱的智能问答方法
Komorebi_9999
知识图谱人工智能
在选择基于知识图谱的智能问答方法时,可以考虑以下几个因素来判断哪种方法最适合您的需求:问题的结构化程度:如果您的问题主要是结构化的,即遵循一定的格式和模板,那么基于模板的方法可能是一个不错的选择。相反,如果问题形式多样,结构不固定,那么基于语义解析或深度学习的方法可能更合适。问题的复杂性:对于简单明了的问题,基于模板或信息检索的方法可能更加高效。然而,对于复杂、模糊或需要深入理解的问题,基于语义解
- AIGC 知识:什么是 RAG? 如何使用 RAG 技术帮助我们制作自己的客户服务功能
surfirst
架构AIGC
RAG解释及其示例什么是RAG?检索增强生成(RetrievalAugmentedGeneration,RAG)是一种人工智能技术,将信息检索与文本生成相结合。以下是它的运作方式:检索:1.您提出一个问题或请求信息摘要。2.RAG在庞大的文本数据集中(文档、文章等)搜索相关信息。增强:3.RAG找到相关信息后,不会简单地将其原封不动地呈现出来。相反,它会分析内容,提取关键点,并将其与您的特定问题或
- Elasticsearch:特定领域的生成式 AI - 预训练、微调和 RAG
Elastic 中国社区官方博客
AIElasticsearchElastic人工智能elasticsearch大数据搜索引擎全文检索
作者:来自ElasticSteveDodson有多种策略可以将特定领域的知识添加到大型语言模型(LLM)中,并且作为积极研究领域的一部分,正在研究更多方法。对特定领域数据集进行预训练和微调等方法使LLMs能够推理并生成特定领域语言。然而,使用这些LLM作为知识库仍然容易产生幻觉。如果领域语言与LLM训练数据相似,则通过检索增强生成(RAG)使用外部信息检索系统向LLM提供上下文信息可以改善事实响应
- 【软考高级信息系统项目管理师--第五章:信息系统工程下】
码上有前
软考高项职场和发展程序人生学习方法软件工程
作者:“码上有前”文章简介:软考高级–信息系统项目管理师欢迎小伙伴们点赞、收藏⭐、留言第五章:信息系统工程下数据工程十八、数据模型分类十九、数据建模过程二十、数据元数据标准化管理数掘备份数据容灾数据清理步骤数据开发利用二十四,信息检索系统集成系统安全数据工程十八、数据模型分类1、概念模型:基本元素包含实体、属性、、键、关联;2、辑模型:主要数据结构有层次结构、网状结构、关系型、面向对象模型。3、物
- word embedding是什么,word embedding之前需要做什么?
liaolaa
深度学习自然语言处理pytorch语言模型
我们知道自然语言处理是让机器能够看懂并理解人类所说的语言,能够像人类一样进行交互,和人对话。从自然语言的角度看,NLP可以大致分为自然语言处理和自然语言生成这两部分,就是理解文本和文本生成。具体应用领域几乎覆盖日常生活,如提取文章摘要,文本情感分析,淘宝京东上机器人客服的智能问答,实体命名识别,知识图谱,信息检索等等。又比如说现在已经有方言的语音转文字技术。那具体实现起来该怎么样呢?我们总不能直接
- python实现搜索引擎,数据检索项目:职业查询系统(基本的搜索引擎+爬虫拉勾网职业数据库),搜索引擎可以学习用户的标记,职业网站爬虫生成数据集
violet_ever_garden
python搜索引擎爬虫算法
简介信息检索小组项目,队友已同意上传用spider爬拉钩网站排序文档基于tfidf和cosine相似性从搜索历史和用户标记的相关和不相关的结果中学习IDE规则方法,优化结果基于Tkinter的UI标准登录模块主搜索窗口与页面切换这里我只放出我贡献相关的部分,原文为英文,懒得翻译就机翻一下,文末给出文件链接正文数据处理搜索引擎我们遵循基本的管道,并实现了排名搜索引擎与一些经典的算法,我们已经研究过。
- 工信部颁发的《自然语言与语音处理设计开发工程师》中级证书的培训通知
人工智能技术与咨询
人工智能计算机视觉自然语言处理
国家发展大势所趋,促进各行各业智能化、数字化转型,而计算机自然语言处理是一个快速发展的领域,随着人工智能技术的不断发展和应用,对自然语言处理的需求也越来越大。因此,计算机自然语言处理的就业前景非常好。在就业方面,计算机自然语言处理领域主要涉及人工智能、自然语言处理、机器学习、语音识别、信息检索等方面的工作,包括算法工程师、数据分析师、自然语言处理工程师、语音处理工程师、信息检索工程师等职位。在科技
- 【Meta分析】临床试验信息检索与数据获取
医科堂
系统评价/Meta分析指全面收集所有相关研究并逐个进行严格评价和分析,再用定性或定量合成的方法对资料进行处理得出综合结论的研究方法。在指导学员的过程中发现初学者在学习过程中常常会碰到许多共性问题,本公众号特此开设专栏解答,希望能够和大家共同学习交流Meta分析,共同成长,如有不当之处,还请大家批评指正。本期我们分享的是如何检索和筛选临床试验注册数据。01序言昨日,一位学员提问在筛选clinical
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p