Python大数据之PySpark(七)SparkCore案例

文章目录

    • SparkCore案例
      • PySpark实现SouGou统计分析
    • 总结
    • 后记

SparkCore案例

PySpark实现SouGou统计分析

  • jieba分词:

  • pip install jieba 从哪里下载pypi

  • image-20210911172012214

  • 三种分词模式

  • 精确模式,试图将句子最精确地切开,适合文本分析;默认的方式

  • 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;

  • 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

  • Python大数据之PySpark(七)SparkCore案例_第1张图片

# -*- coding: utf-8 -*-
# Program function:测试结巴分词
import jieba
import re

# jieba.cut
# 方法接受四个输入参数:
# 需要分词的字符串;
# cut_all 参数用来控制是否采用全模式;
# HMM 参数用来控制是否使用 HMM 模型;
# use_paddle 参数用来控制是否使用paddle模式下的分词模式,paddle模式采用延迟加载方式,通过enable_paddle接口安装paddlepaddle-tiny,并且import相关代码;
str = "我来到北京清华大学"
print(list(jieba.cut(str)))  # ['我', '来到', '北京', '清华大学'],默认的是精确模式
print(list(jieba.cut(str, cut_all=True)))  # ['我', '来到', '北京', '清华', '清华大学', '华大', '大学'] 完全模式

# 准备的测试数据
str1 = "00:00:00	2982199073774412	[360安全卫士]	8 3	download.it.com.cn/softweb/software/firewall/antivirus/20067/17938.html"
print(re.split("\s+", str1)[2])  # [360安全卫士]
print(re.sub("\[|\]", "", re.split("\s+", str1)[2])) #360安全卫士
print(list(jieba.cut(re.sub("\[|\]", "", re.split("\s+", str1)[2]))))  # [360安全卫士] --->['360', '安全卫士']
  • Python大数据之PySpark(七)SparkCore案例_第2张图片
  • 数据认知:数据集来自于搜狗实验室,日志数据

  • 日志库设计为包括约1个月(2008年6月)Sogou搜索引擎部分网页查询需求用户点击情况的网页查询日志数据集合。

  • Python大数据之PySpark(七)SparkCore案例_第3张图片
  • Python大数据之PySpark(七)SparkCore案例_第4张图片
  • 需求

  • 1-首先需要将数据读取处理,形成结构化字段进行相关的分析

  • 2-如何对搜索词进行分词,使用jieba或hanlp

  • jieba是中文分词最好用的工具

  • Python大数据之PySpark(七)SparkCore案例_第5张图片
  • 步骤

  • 1-读取数据

  • 2-完成需求1:搜狗关键词统计

  • 3-完成需求2:用户搜索点击统计

  • 4-完成需求3:搜索时间段统计

  • 5-停止sparkcontext

  • 代码

# -*- coding: utf-8 -*-

# Program function:搜狗分词之后的统计

'''

* 1-读取数据
* 2-完成需求1:搜狗关键词统计
* 3-完成需求2:用户搜索点击统计
* 4-完成需求3:搜索时间段统计
* 5-停止sparkcontext
 '''
 from pyspark import SparkConf, SparkContext
 import re
 import jieba

if __name__ == '__main__':

# 准备环境变量

conf = SparkConf().setAppName("sougou").setMaster("local[*]")
sc = SparkContext.getOrCreate(conf=conf)
sc.setLogLevel("WARN")

# TODO*1 - 读取数据

sougouFileRDD = sc.textFile("/export/data/pyspark_workspace/PySpark-SparkCore_3.1.2/data/sougou/SogouQ.reduced")

# print("sougou count is:", sougouFileRDD.count())#sougou count is: 1724264

# 00:00:00 2982199073774412   [360安全卫士]  8 3    download.it.com.cn/softweb/software/firewall/antivirus/20067/17938.html

resultRDD=sougouFileRDD \
.filter(lambda line:(len(line.strip())>0) and (len(re.split("\s+",line.strip()))==6))\
.map(lambda line:(
  re.split("\s+", line)[0],
  re.split("\s+", line)[1],
  re.sub("\[|\]", "", re.split("\s+", line)[2]),
  re.split("\s+", line)[3],
  re.split("\s+", line)[4],
  re.split("\s+", line)[5]
))

# print(resultRDD.take(2))

#('00:00:00', '2982199073774412', '360安全卫士', '8', '3', 'download.it.com.cn/softweb/software/firewall/antivirus/20067/17938.html')
#('00:00:00', '07594220010824798', '哄抢救灾物资', '1', '1', 'news.21cn.com/social/daqian/2008/05/29/4777194_1.shtml')

# TODO*2 - 完成需求1:搜狗关键词统计

print("=============完成需求1:搜狗关键词统计==================")
recordRDD = resultRDD.flatMap(lambda record: jieba.cut(record[2]))

# print(recordRDD.take(5))

sougouResult1=recordRDD\
  .map(lambda word:(word,1))\
  .reduceByKey(lambda x,y:x+y)\
  .sortBy(lambda x:x[1],False)

# print(sougouResult1.take(5))

# TODO*3 - 完成需求2:用户搜索点击统计

print("=============完成需求2:用户搜索点击统计==================")

# 根据用户id和搜索的内容作为分组字段进行统计

sougouClick = resultRDD.map(lambda record: (record[1], record[2]))
sougouResult2=sougouClick\
  .map(lambda tuple:(tuple,1))\
  .reduceByKey(lambda x,y:x+y) #key,value

# 打印一下最大的次数和最小的次数和平均次数

print("max count is:",sougouResult2.map(lambda x: x[1]).max())
print("min count is:",sougouResult2.map(lambda x: x[1]).min())
print("mean count is:",sougouResult2.map(lambda x: x[1]).mean())

# 如果对所有的结果排序

# print(sougouResult2.sortBy(lambda x: x[1], False).take(5))

# TODO*4 - 完成需求3:搜索时间段统计

print("=============完成需求3:搜索时间段-小时-统计==================")
#00:00:00
hourRDD = resultRDD.map(lambda x: str(x[0])[0:2])
sougouResult3=hourRDD\
  .map(lambda word:(word,1))\
  .reduceByKey(lambda x,y:x+y)\
  .sortBy(lambda x:x[1],False)
print("搜索时间段-小时-统计",sougouResult3.take(5))

# TODO*5 - 停止sparkcontext

sc.stop()

总结

  • 重点关注在如何对数据进行清洗,如何按照需求进行统计
  • 1-rdd的创建的两种方法,必须练习
  • 2-rdd的练习将基础的案例先掌握。map。flatMap。reduceByKey
  • 3-sougou的案例需要联系2-3遍
  • 练习流程:
  • 首先先要将代码跑起来
  • 然后在理解代码,这一段代码做什么用的
  • 在敲代码,需要写注释之后敲代码

后记

博客主页:https://manor.blog.csdn.net

欢迎点赞 收藏 ⭐留言 如有错误敬请指正!
本文由 Maynor 原创,首发于 CSDN博客
感觉这辈子,最深情绵长的注视,都给了手机⭐
专栏持续更新,欢迎订阅:https://blog.csdn.net/xianyu120/category_12453356.html

你可能感兴趣的:(#,PySpark,python,大数据,开发语言)