- Angular中`trackBy`函数的独特性与性能优化
t0_54program
编程问题解决手册angular.js前端javascript个人开发
在Angular项目中,优化性能是每一个开发者都需要考虑的问题。特别是在处理大数据量或动态变化的列表时,Angular的trackBy函数成为了我们手中的利器。然而,当我们面对多个列表使用相同trackBy函数时,可能会产生一些疑问:如果这些列表中的项有相同的ID,是否会影响Angular的变更检测?本文将详细探讨trackBy函数在这种情境下的表现及其带来的性能优化。trackBy函数简介tra
- 石油储运生产 2D 可视化,组态应用赋能工业智慧发展
智慧园区
智慧城市bigdata人工智能大数据物联网网络
当前,国际油价低位徘徊导致各国石油化工行业投资大幅缩减,石油化工建设行业竞争环境日趋严峻,施工企业的利润空间也被不断压缩。内外交困的环境下,促使企业采取更有效的管理手段来提高效率和降低成本。石油工业大数据具有无限潜力与价值,将大数据与数据挖掘技术应用其中,不仅可以提升石油行业工业化水平,而且对其智慧化发展起到强有力的推动作用。图扑软件-构建先进2D和3D可视化所需要的一切图扑软件采用自主研发的HT
- 使用GitHub API进行智能文档加载
fgayif
githubpython
GitHub是一个强大的开发者平台,提供了代码存储、管理和分享的功能。它采用Git软件,增强了分布式版本控制,同时提供了访问控制、错误跟踪、软件功能请求、任务管理、持续集成和项目的wiki等功能。随着AI技术的发展,我们可以利用GitHub的API实现智能文档加载,以便更好地进行代码管理和分析。下面我将介绍如何使用GitHubAPI进行文档加载,并通过实用的代码示例来帮助大家理解。技术背景介绍Gi
- 人民日报报道,华为云赋能智能制造助力图扑软件构造数字孪生场景
智慧园区
华为人工智能物联网
2021年12月22日,《人民日报》头版头条刊登了《华为云赋能智能制造,助力图扑软件构造数字孪生场景》一文,聚焦数据可视化建设发展。报道指出,数字经济发展的背后,是大数据时趋势下各地区积极贯彻国家数字经济发展战略的时代精神;高效便捷管控的背后,是云端平台各大企业的互助共赢;高质精准2D、3D数据可视图的背后,是专注于数据可视化Web组态开发的厦门图扑软件科技有限公司。并对厦门图扑软件科技有限公司进
- Java架构师成长之路
hweiyu00
分享spring微服务springcloudjava
概述本教程主要从6个方面,全面讲解Java技术栈的知识。1.性能调优深入理解MySQL底层原理、索引逻辑,数据结构与算法。使用Explain进行优化分析MVCC原理剖析日志机制解析2.框架源码掌握Spring底层原理带你手写一个Spring解析IOC、AOP源码、以及事务原理3.并发编程剖析Java底层锁机制CAS、JUC工具使用、AQS源码分析以及并发的集合类的讲解4.分布式开发剖析分布式中使用
- 华为云赋能智能制造,助力图扑软件构造数字孪生场景
36Kr网
科技华为云制造bigdata
出行手机查看交通方案、物业管理的智能可视勘察管控、疫情地图提前预知危害……这些曾经存在于科幻片中的高科技场景一一在现代生活得到了应用与普及,其背后的数据可视化应用,正贯穿于当今大数据时代的各行各业,成为人们洞察数据内涵的有力工具,推动数字经济发展驶入“快车道”。数字经济发展的背后,是大数据时趋势下各地区积极贯彻国家数字经济发展战略的时代精神;高效便捷管控的背后,是云端平台各大企业的互助共赢;高质精
- 【读点论文】Chain Replication for Supporting High Throughput and Availability
寻雾&启示
分布式系统论文阅读
在分布式系统中,强一致性往往和高可用、高吞吐是矛盾的。比如传统的关系型数据库,其保证了强一致性,但往往牺牲了可用性和吞吐量。而像NoSQL数据库,虽然其吞吐量、和扩展性很高,但往往只支持最终一致性,无法保证强一致性。由此ChainReplicationforSupportingHighThroughputandAvailability提出了链式复制协议,旨在保证高吞吐、高可用的同时,支持数据的强一
- spark explain如何使用
fzip
Sparkspark执行计划
在Spark中,explain是分析SQL或DataFrame执行计划的核心工具,通过不同模式可展示查询优化和执行的详细信息,默认情况下,这个语句只提供关于物理计划的信息。以下是具体使用方法及不同模式的作用:1.explain的基本语法在Spark3.0及以上版本,explain支持多种模式参数,通过mode指定输出格式:#DataFrame调用方式df.explain(mode="simple"
- 【自建分布式数据库详细指南】(五)使用:常见API及使用问题
大板牙花生
分布式
延续前几篇文章,下面着重从一些基本的API讲讲从入门到习惯的常用方法,后续更新。USAGE1节点管理设置主节点,又成为协调节点SELECTcitus_set_coordinator_host('coord.example.com',5432);step1.创建节点select*frommaster_add_node('new-node',12345);step2.删除节点step3.新增节点后重新
- 【Spark】查询优化中分区(Partitioning)和分桶(Bucketing)是什么关系?什么时候应当分区,什么时候应当分桶?
petrel2015
spark大数据分布式数据库
在学习Spark的过程中,分区和分桶乍一看很像,都能为了计算加速,但是仔细一想,一查还是有些差异的,甚至说差异很大。那么具体有什么差异点,有什么相同点。我做出了如下的整理,供大家参考,欢迎指正。相同点分区(Partitioning)和分桶(Bucketing)在很多方面具有相似性,它们都是用于优化大数据查询性能的技术数据划分的目的:优化查询性能分区和分桶的核心目标是通过将数据分割成更小的逻辑单元来
- Rust + 时序数据库 TDengine:打造高性能时序数据处理利器
涛思数据(TDengine)
时序数据库rusttdengine
引言:为什么选择TDengine与Rust?TDengine是一款专为物联网、车联网、工业互联网等时序数据场景优化设计的开源时序数据库,支持高并发写入、高效查询及流式计算,通过“一个数据采集点一张表”与“超级表”的概念显著提升性能。Rust作为一门系统级编程语言,近年来在数据库、嵌入式系统、分布式服务等领域迅速崛起,以其内存安全、高性能著称,与TDengine的高效特性天然契合,适合构建高可靠、高
- pyspark学习rdd处理数据方法——学习记录
亭午
学习
python黑马程序员"""文件,按JSON字符串存储1.城市按销售额排名2.全部城市有哪些商品类别在售卖3.上海市有哪些商品类别在售卖"""frompysparkimportSparkConf,SparkContextimportosimportjsonos.environ['PYSPARK_PYTHON']=r"D:\anaconda\envs\py10\python.exe"#创建Spark
- 数据湖Iceberg、Hudi和Paimon比较_数据湖框架对比(1)
2301_79098963
程序员知识图谱人工智能
4.Schema变更支持对比项ApacheIcebergApacheHudiApachePaimonSchemaEvolutionALLback-compatibleback-compatibleSelf-definedschemaobjectYESNO(spark-schema)NO(我理解,不准确)SchemaEvolution:指schema变更的支持情况,我的理解是hudi仅支持添加可选列
- LLM之向量数据库Chroma milvus FAISS
maxmaxma
数据库milvusfaiss
以下是Chroma、Milvus和FAISS的核心区别,从功能定位、架构设计、性能及应用场景等维度进行对比:一、功能定位Chroma轻量级向量数据库:专注于快速构建中小型语义搜索原型,提供简单易用的API,适合快速集成到现有应用中。特点:支持近似最近邻搜索(ANN)、实时性能优化,但对大规模数据处理能力有限。Milvus分布式向量数据库:专为超大规模向量数据设计,支持云原生架构和高可用性,适合企业
- 大数据技术实战---项目中遇到的问题及项目经验
一个“不专业”的阿凡
大数据
问题导读:1、项目中遇到过哪些问题?2、Kafka消息数据积压,Kafka消费能力不足怎么处理?3、Sqoop数据导出一致性问题?4、整体项目框架如何设计?项目中遇到过哪些问题7.1Hadoop宕机(1)如果MR造成系统宕机。此时要控制Yarn同时运行的任务数,和每个任务申请的最大内存。调整参数:yarn.scheduler.maximum-allocation-mb(单个任务可申请的最多物理内存
- 深入解析Flink Kafka Connector的分布式流数据采集架构与底层实现
数据与算法架构提升之路
#Flinkflinkkafkaconector源码
目录1.FlinkKafka连接器的分布式流采集架构1.1架构组成1.2分布式流模型2.数据分区分配策略3.为什么重写序列化和偏移量管理3.1与Flink分布式架构集成3.2与Flink检查点机制集成同时承接多级并行架构3.3OffsetsInitializer与细粒度偏移量控制3.4与Flink的Source接口统一4.版本兼容性管理5.有界流处理支持5.1实现原理5.2API使用示例5.3多种
- AI模型技术演进与行业应用图谱
智能计算研究中心
其他
内容概要当前AI模型技术正经历从基础架构到行业落地的系统性革新。主流深度学习框架如TensorFlow和PyTorch持续优化动态计算图与分布式训练能力,而MXNet凭借高效的异构计算支持在边缘场景崭露头角。与此同时,模型压缩技术通过量化和知识蒸馏将参数量降低60%-80%,联邦学习则通过加密梯度交换实现多机构数据协同训练。在应用层面,医疗诊断模型通过迁移学习在CT影像分类任务中达到98.2%的准
- Sa-Token v1.20.0 发布,新增临时Token认证
框架介绍Sa-Token是一个轻量级Java权限认证框架,主要解决:登录认证、权限认证、分布式Session会话、单点登录、OAuth2.0等一系列权限相关问题。框架针对踢人下线、自动续签、前后台分离、分布式会话……等常见业务进行N多适配,通过sa-token,你可以以一种极简的方式实现系统的权限认证部分Sa-Tokenv1.20.0版本更新包括以下内容:新增:新增Solon适配插件,感谢大佬@刘
- SpringBoot分布式架构下字典表设计与实战应用
潘多编程
springboot分布式架构
在分布式系统中,字典表作为基础数据的核心载体,其设计合理性直接影响系统的扩展性和维护效率。本文将结合具体代码实例,深入讲解分布式环境下字典表的设计方案与实现细节。一、分布式环境下的字典表挑战数据一致性要求:多服务节点间的字典数据同步高并发访问压力:基础数据的频繁读取需求动态更新需求:业务运行时字典数据的热更新能力多级缓存策略:本地缓存与分布式缓存的协同工作二、技术方案设计架构图:[Client]-
- Apache大数据旭哥优选大数据选题
Apache大数据旭
大数据定制选题javahadoopspark开发语言ideahive数据库架构
定制旭哥服务,一对一,无中介包安装+答疑+售后态度和技术都很重要定制按需求做要求不高就实惠一点定制需提前沟通好怎么做,这样才能避免不必要的麻烦python、flask、Django、mapreduce、mysqljava、springboot、vue、echarts、hadoop、spark、hive、hbase、flink、SparkStreaming、kafka、flume、sqoop分析+推
- 【Hive】-- hive 3.1.3 伪分布式部署(单节点)
oo寻梦in记
ApachePaimon大数据服务部署hive分布式hadoop
1、环境准备1.1、版本选择apachehive3.1.3apachehadoop3.1.0oraclejdk1.8mysql8.0.15操作系统:Macos10.151.2、软件下载https://archive.apache.org/dist/hive/https://archive.apache.org/dist/hadoop/1.3、解压tar-zxvfapache-hive-4.0.0-
- Java后端开发技术详解
小二爱编程·
java开发语言
Java作为一门成熟的编程语言,已广泛应用于后端开发领域。其强大的生态系统和广泛的支持库使得Java成为许多企业和开发者的首选后端开发语言。随着云计算、微服务架构和大数据技术的兴起,Java后端开发的技术栈也不断演进。本文将详细介绍Java后端开发的核心技术,包括Java基础、常见框架、数据库操作、缓存技术、异步编程等。1.Java基础:理解面向对象的编程Java是一种面向对象的编程语言,面向对象
- 【Linux】Hadoop-3.4.1的伪分布式集群的初步配置
孤独打铁匠Julian
Linuxlinuxhadoopubuntu
配置步骤一、检查环境JDK#目前还是JDK8最适合Hadoopjava-versionecho$JAVA_HOMEHadoophadoopversionecho$HADOOP_HOME二、配置SSH免密登录Hadoop需要通过SSH管理节点(即使在伪分布式模式下)sudoaptinstallopenssh-server#安装SSH服务(如未安装)cd~/.ssh/ssh-keygen-trsa#生
- 事务回滚核心技术
KBkongbaiKB
java
一、事务回滚的数学本质与核心挑战1.1事务状态机模型操作执行持久化完成系统故障事务回滚ActivePartiallyCommittedCommittedFailedAborted1.2核心技术挑战矩阵问题维度单机事务分布式事务原子性保证存储引擎WAL日志二阶段提交协议隔离性实现MVCC多版本控制全局锁调度机制可见性管理事务ID版本链向量时钟同步回滚触发条件SQL执行异常/死锁网络分区/节点故障二、
- IDC权威认证!永洪科技入选 IDC「GBI图谱」,点亮生成式 BI 价值灯塔
永洪科技
科技人工智能BI大数据数据分析
大数据市场正在稳步前进,生成式AI已成为厂商服务的重点方向,其发展离不开数据底座建设和数据工程管理,反过来AI也会帮助开发运维人员、业务人员和管理层更好地使用、查询数据。IDC调研数据显示,在生成式AI的驱动下,未来5年企业在数据管理和数据分析基础设施建设的投资增长率将分别达到8.7%和9.2%。近日,国际咨询机构IDC发布了《中国数据智能市场生态图谱V5.0》,在这一领域,永洪科技以其创新前沿的
- 打造金融数据新引擎,看永洪科技助力头部农信社搭建一站式分析平台
永洪科技
金融数据可视化BI数据分析大数据
在数字化转型的浪潮中,金融行业作为经济发展的核心引擎,正加速探索数字化、智能化的新路径。永洪科技,近日成功助力某省农村信用社联合社(简称:Z企业)完成了其数字化转型的重要一步,通过部署先进的商业智能解决方案,为Z企业的业务升级与效能提升注入了强劲动力。随着智能金融时代的来临,以大数据、人工智能、移动互联等新兴技术为核心的金融科技持续赋能银行金融业务数字化、智能化、开放化的发展,为金融机构营销体系的
- 读书笔记五 ---大数据之路--数仓分层
qq_38215991
bigdata大数据
数据分层在流式数据模型中,数据模型整体上分为五层。ODS层跟离线系统的定义一样,ODS层属于操作数据层,是直接从业务系统采集过来的最原始数据(进行了数据清洗),包含了所有业务的变更过程,数据粒度也是最细的。在这一层,实时和离线在源头上是统一的,这样的好处是用同一份数据加工出来的指标,口径基本是统一的,可以更方便进行实时和离线问数据比对。例如:原始的订单变更记录数据、服务器引擎的访同日志。(原始数据
- 从零开始学习 Go 语言
九班长
Golang学习golang后端开发语言gin
Go语言(又称Golang)是由Google开发的一种静态强类型、编译型、并发型编程语言。它以其简洁的语法、高效的并发支持和强大的标准库而闻名,非常适合开发高性能的服务器端应用、分布式系统和云计算工具。本文将从零开始,详细介绍如何学习Go语言,涵盖基础语法、核心概念、并发编程、工具链和实战项目等内容。1.Go语言简介1.1Go语言的特点简洁易学:语法简洁,学习曲线平缓。高效编译:编译速度快,生成的
- 麒麟服务器操作系统Redis部署手册
太极淘
麒麟操作系统管理工具服务器redis运维
软件简介Redis****介绍REmoteDIctionaryServer(Redis)是一个由SalvatoreSanfilippo写的key-value存储系统,是跨平台的非关系型数据库。Redis是一个开源的使用ANSIC语言编写、遵守BSD协议、支持网络、可基于内存、分布式、可选持久性的键值对(Key-Value)存储数据库,并提供多种语言的API。Redis通常被称为数据结构服务器,因为
- 使用LangGraph迁移MapReduceDocumentsChain进行长文档的摘要
dgay_hua
python
在大数据处理和文本分析领域,MapReduce是一种非常重要的策略,用于处理和分析大型数据集。具体到文本处理方面,MapReduceDocumentsChain구현了一种map-reduce策略,可以有效地处理长文本。本文将介绍如何从MapReduceDocumentsChain迁移到LangGraph,并探讨LangGraph在流处理、检查点恢复等方面的优势。技术背景介绍MapReduceDoc
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla