总结—快速随机探索树的发展

RRT

  • RRT(2001)
  • PRM*
  • RRG
  • VFRRT(2013)
  • RRT*(2011)
    • Anytime RRT*(2011)
    • Kinodynamic RRT*(2013)
    • informed RRT*(2018)
    • GuILD RRT*(2021)
    • RRT*-AB(可调整边界)(2018)
  • RRT#(2013)
  • XXL(2020)
  • Bidirectional RRT
    • RRT-connect (BRRT)(2000)
    • B-RRT*
    • IB-RRT*(2015)
  • informed RRT*
    • BIT*(Batch informed Trees)(2015)
    • AIT*(Adaptively informed Trees)(2020)
    • ABIT*(Advanced BIT*)(2020)
  • 其他改进

RRT(2001)

总结—快速随机探索树的发展_第1张图片

总结—快速随机探索树的发展_第2张图片

PRM*

总结—快速随机探索树的发展_第3张图片

RRG

总结—快速随机探索树的发展_第4张图片

VFRRT(2013)

I. Ko, B. Kim and F. C. Park, “VF-RRT: Introducing optimization into randomized motion planning,” 2013 9th Asian Control Conference (ASCC), 2013, pp. 1-5, doi: 10.1109/ASCC.2013.6606360.

总结—快速随机探索树的发展_第5张图片

RRT*(2011)

Karaman, Sertac, and Emilio Frazzoli. “Sampling-Based Algorithms for Optimal Motion Planning.” The International Journal of Robotics Research, vol. 30, no. 7, June 2011, pp. 846–894, doi:10.1177/0278364911406761.
总结—快速随机探索树的发展_第6张图片
总结—快速随机探索树的发展_第7张图片

  • IB-RRT*论文里的理解
    总结—快速随机探索树的发展_第8张图片
    总结—快速随机探索树的发展_第9张图片总结—快速随机探索树的发展_第10张图片总结—快速随机探索树的发展_第11张图片

  • 博文理解
    总结—快速随机探索树的发展_第12张图片
    总结—快速随机探索树的发展_第13张图片

Anytime RRT*(2011)

S. Karaman, M. R. Walter, A. Perez, E. Frazzoli and S. Teller, “Anytime Motion Planning using the RRT*,” 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 1478-1483, doi: 10.1109/ICRA.2011.5980479.

Keep optimizing the leaf RRT tree when the robot executes the current trajectory Anytime Fashion.

  • the RRT% committed trajectories
  • branch-and-bound tree adaptation
    总结—快速随机探索树的发展_第14张图片
    总结—快速随机探索树的发展_第15张图片
    总结—快速随机探索树的发展_第16张图片

Kinodynamic RRT*(2013)

D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics,” 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 5054-5061, doi: 10.1109/ICRA.2013.6631299.

基于增量采样的方法,通过使用固定-最终状态-自由-最终时间控制器来优化连接任何一对状态,其中成本函数被表示为轨迹持续时间和所花费的控制努力之间的权衡。Change Steer() function to fit with motion or other constraints in robot navigation.
总结—快速随机探索树的发展_第17张图片
总结—快速随机探索树的发展_第18张图片

informed RRT*(2018)

J. D. Gammell, T. D. Barfoot and S. S. Srinivasa, “Informed Sampling for Asymptotically Optimal Path Planning,” in IEEE Transactions on Robotics, vol. 34, no. 4, pp. 966-984, Aug. 2018, doi: 10.1109/TRO.2018.2830331.

总结—快速随机探索树的发展_第19张图片

总结—快速随机探索树的发展_第20张图片
总结—快速随机探索树的发展_第21张图片

总结—快速随机探索树的发展_第22张图片

GuILD RRT*(2021)

Aditya Mandalika and Rosario Scalise and Brian Hou and Sanjiban Choudhury and Siddhartha S. Srinivasa, Guided Incremental Local Densification for Accelerated Sampling-based Motion Planning," in Arxiv, 2021, https://arxiv.org/abs/2104.05037

总结—快速随机探索树的发展_第23张图片
总结—快速随机探索树的发展_第24张图片
总结—快速随机探索树的发展_第25张图片总结—快速随机探索树的发展_第26张图片

RRT*-AB(可调整边界)(2018)

Noreen, Iram ; Khan, Amna ; Ryu, Hyejeong et al. / Optimal path planning in cluttered environment using RRT*-AB. In: Intelligent Service Robotics. 2018 ; Vol. 11, No. 1. pp. 41-52.

连接区域:足够灵活,可以在复杂的环境中成长。一旦找到路径,就使用节点剔除和集中的有界抽样对其进行逐步优化。
基于目标的有界采样:在连接区域的边界内进行的,以寻找初始路径
路径优化:通过全局修剪进一步改进,以消除多余的节点。
总结—快速随机探索树的发展_第27张图片

RRT#(2013)

O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-based algorithms for optimal motion planning,” 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 2421-2428, doi: 10.1109/ICRA.2013.6630906.
借用著名的LPA*算法的思路,本文提出了一种基于快速探索随机图(RRG)的新的增量采样运动规划算法。
它还保证了以初始状态为根的构造生成树包含有可能成为最优解一部分的顶点的最低成本路径信息。这意味着,如果当前图中有一些顶点已经在目标区域内,那么就很容易计算出可能的最佳解决方案。
本文提出了一种新的基于增量采样的算法,用RRT#表示,它为解决运动规划问题提供了渐进的最优解。通过纳入树中所有当前顶点的静止性信息,我们可以对潜在路径的最优值进行更明智的估计,这导致初始收敛率优于RRT*算法。本文的工作可以在几个方向上进行扩展。首先,由于RRT#算法将顶点集分解为 "有希望的 "和 “无希望的”,可以开发更聪明的采样策略来利用这些信息。
此外,该算法的并行版本 该算法的并行版本可以通过将Extend和Replan程序作为独立的线程来实现。最后,开发步骤可以只在当前树上添加了几个新顶点后定期执行。这些扩展是正在进行的工作的一部分

总结—快速随机探索树的发展_第28张图片

lmc:locally minimum cost-to-come estimate总结—快速随机探索树的发展_第29张图片
总结—快速随机探索树的发展_第30张图片
总结—快速随机探索树的发展_第31张图片

XXL(2020)

【又名】BiRLRT(2020)Bi-directional Range-Limited Random Tree

R. Luna, M. Moll, J. Badger, and L. E. Kavraki. A Scalable Motion Planner for High-Dimensional Kinematic Systems. Intl. J. of Robotics Research, vol. 39, issue 4, pp. 361-388, Mar. 2020. DOI: 10.1177/0278364919890408

总结—快速随机探索树的发展_第32张图片
总结—快速随机探索树的发展_第33张图片
总结—快速随机探索树的发展_第34张图片

Bidirectional RRT

RRT-connect (BRRT)(2000)

Kuffner, James J., and Steven M. LaValle. “RRT-connect: An efficient approach to single-query path planning.” Proceedings 2000 ICRA.
总结—快速随机探索树的发展_第35张图片

总结—快速随机探索树的发展_第36张图片

B-RRT*

总结—快速随机探索树的发展_第37张图片
总结—快速随机探索树的发展_第38张图片

IB-RRT*(2015)

Qureshi, Ahmed Hussain, and Yasar Ayaz. “Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments.” Robotics and Autonomous Systems 68 (2015): 1-11.

总结—快速随机探索树的发展_第39张图片总结—快速随机探索树的发展_第40张图片在这里插入图片描述
总结—快速随机探索树的发展_第41张图片

informed RRT*

J. D. GammellS. S. SrinivasaT. D. Barfoot. Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)2997–3004Chicago, IL, USA1418 Sep. 2014.

BIT*(Batch informed Trees)(2015)

Batch Informed Trees (BIT*): Sampling-based Optimal Planning via the Heuristically Guided Search of Implicit Random Geometric Graphs(2015)
J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, “Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search.” The International Journal of Robotics Research (IJRR), 39(5): 543-567, Apr. 2020. DOI:https://doi.org/10.1177/0278364919890396"

Papers&code
总结—快速随机探索树的发展_第42张图片总结—快速随机探索树的发展_第43张图片
(2020)的paper算法
总结—快速随机探索树的发展_第44张图片
总结—快速随机探索树的发展_第45张图片
总结—快速随机探索树的发展_第46张图片
总结—快速随机探索树的发展_第47张图片
总结—快速随机探索树的发展_第48张图片
总结—快速随机探索树的发展_第49张图片

AIT*(Adaptively informed Trees)(2020)

M. P. Strub, J. D. Gammell. “Adaptively Informed Trees (AIT*): Fast Asymptotically Optimal Path Planning through Adaptive Heuristics” in Proceedings of the IEEE international conference on robotics and automation (ICRA),Paris, France, 31 May – 4 Jun. 2020.

总结—快速随机探索树的发展_第50张图片
总结—快速随机探索树的发展_第51张图片
总结—快速随机探索树的发展_第52张图片

ABIT*(Advanced BIT*)(2020)

M. P. Strub, J. D. Gammell. “Advanced BIT* (ABIT*): Sampling-based planning with advanced graph-search techniques.” in Proceedings of the IEEE international conference on robotics and automation (ICRA), Paris, France, 31 May – 4 Jun. 2020.

总结—快速随机探索树的发展_第53张图片

其他改进

  • Hybrid A是在A算法的基础上考虑物体实际运动约束的一种算法,最早是在2010年由斯坦福大学提出,并在DARPA的城市挑战赛得以应用。

你可能感兴趣的:(总结,RRT)