数据结构与算法学习 (02)线性表

1.1线性表的概念

满足数据元素不同,但是在同一个线性表中的元素必定具有相同的特点,即属于同一数据对象, 相邻数据元素之间存在这个序偶关系. 诸如此类由(n>=0)个数据特性相同的元素构成的有限序列称为"线性表"。
即将具有“一对一”关系的数据“线性”地存储到物理空间中,这种存储结构就称为线性存储结构(简称线性表)。

线性表中的元素的个数n定义为线性表的长度,如果n = 0则称为空表。

使用线性表存储的数据,如同向数组中存储数据那样,要求数据类型必须一致,也就是说,线性表存储的数据,要么全不都是整形,要么全部都是字符串。一半是整形,另一半是字符串的一组数据无法使用线性表存储。
非空的线性表和线性结构具有以下特点:
存在唯一的一个被称作"第一个"的数据元素
存在唯一的一个呗称作"最后一个"的数据元素
除了第一个之外,结构中的每个数据元素均有一个前驱
除了最后一个之外,结构中的每个数据元素都有一个后继.

1.2线性表的顺序存储实现

1定义

#define MAXSIZE 100
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

/* ElemType类型根据实际情况而定,这里假设为int */
typedef int ElemType;
/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Status;

/*线性结构使用顺序表的方式存储*/

//顺序表结构设计
typedef struct {
    ElemType *data;//指向一块连续的内存空间来存储数据
    int length;//表的长度
}Sqlist;

2.顺序表的初始化
为顺序表L动态分配一个预定义大小的数组空间,使elem 指向这段空间的基地址;
将表的当前长度设置为0;

Status InitList(Sqlist *L){
    //为顺序表分配一个大小为MAXSIZE 的数组空间
    L->data =  malloc(sizeof(ElemType) * MAXSIZE);
    //存储分配失败退出
    if(!L->data) exit(ERROR);
    //空表长度为0
    L->length = 0;
    return OK;
}

int main(int argc, const char * argv[]) {
    // insert code here...
    printf("Hello, Data Structure!\n");
    
    Sqlist L;
    Sqlist Lb;
    ElemType e;
    Status iStatus;
    int j,k;
    
    iStatus = InitList(&L);
    printf("初始化L后: L.Length = %d\n", L.length);
    
    
    return 0;
}

3.顺序表的插入
判断插入位置i是否合法(i值的合法范围1<=i 判断顺序表的存储空间是否已满,若满则返回ERROR;
将第n个至第i个位置的元素依次向后移动一个位置,空出第i个位置(i = n+1)时无需要移动;
将要插入的新元素e放入第i个位置;
表长累积1.

//1.2 顺序表的插入
/*
 初始条件:顺序线性表L已存在,1≤i≤ListLength(L);
 操作结果:在L中第i个位置之前插入新的数据元素e,L的长度加1
 */
Status ListInsert(Sqlist *L,int i,ElemType e){
    
    //i值不合法判断
    if((i<1) || (i>L->length+1)) return ERROR;
    //存储空间已满
    if(L->length == MAXSIZE) return ERROR;
 
    //插入数据不在表尾,则先移动出空余位置
    if(i <= L->length){
        for(int j = L->length-1; j>=i-1;j--){
       
            //插入位置以及之后的位置后移动1位
            L->data[j+1] = L->data[j];
        }
    }
    
    //将新元素e 放入第i个位置上
    L->data[i-1] = e;
    //长度+1;
    ++L->length;
    
    return OK;
    
}
int main(int argc, const char * argv[]) {
    ...
   //1.2 顺序表数据插入
    for(int j=1; j <= 5;j++){
        iStatus = ListInsert(&L, 1, j);
    }
    printf("插入数据L长度: %d\n",L.length);
    
  }

4.顺序表的取值

//1.3 顺序表的取值
Status GetElem(Sqlist L,int i, ElemType *e){
    //判断i值是否合理, 若不合理,返回ERROR
    if(i<1 || i > L.length) return  ERROR;
    //data[i-1]单元存储第i个数据元素.
    *e = L.data[i-1];
    
    return OK;
}
int main(int argc, const char * argv[]) {
    ...
   //1.3 顺序表取值
    GetElem(L, 5, &e);
    printf("顺序表L第5个元素的值为:%d\n",e);
    
  }

5.顺序表的删除

//1.4 顺序表删除
/*
 初始条件:顺序线性表L已存在,1≤i≤ListLength(L)
 操作结果: 删除L的第i个数据元素,L的长度减1
 */
Status ListDelete(Sqlist *L,int i){
    
    //线性表为空
    if(L->length == 0) return ERROR;
    
    //i值不合法判断
    if((i<1) || (i>L->length+1)) return ERROR;
    
    for(int j = i; j < L->length;j++){
        //被删除元素之后的元素向前移动
        L->data[j-1] = L->data[j];
    }
    //表长度-1;
    L->length --;
    
    return OK;
    
}
int main(int argc, const char * argv[]) {
    ...
   //1.4 顺序表删除第2个元素
    ListDelete(&L, 2);
    printf("顺序表删除第%d元素,长度为%d\n",2,L.length);
    
  }

6.清空顺序表

//1.5 清空顺序表
/* 初始条件:顺序线性表L已存在。操作结果:将L重置为空表 */
Status ClearList(Sqlist *L)
{
    L->length=0;
    return OK;
}

7.判断顺序表清空

/1.6 判断顺序表清空
/* 初始条件:顺序线性表L已存在。操作结果:若L为空表,则返回TRUE,否则返回FALSE */
Status ListEmpty(Sqlist L)
{
    if(L.length==0)
        return TRUE;
    else
        return FALSE;
}

8.获取顺序表长度

//1.7 获取顺序表长度ListEmpty元素个数 */
int ListLength(Sqlist L)
{
    return L.length;
}

9.输出顺序表

//1.8 顺序输出List
/* 初始条件:顺序线性表L已存在 */
/* 操作结果:依次对L的每个数据元素输出 */
Status TraverseList(Sqlist L)
{
    int i;
    for(i=0;i

10.查找元素

//1.9 顺序表查找元素并返回位置
/* 初始条件:顺序线性表L已存在 */
/* 操作结果:返回L中第1个与e满足关系的数据元素的位序。 */
/* 若这样的数据元素不存在,则返回值为0 */
int LocateElem(Sqlist L,ElemType e)
{
    int i;
    if (L.length==0) return 0;
    
    for(i=0;i=L.length) return 0;
    return i+1;
}

总结:顺序表的优缺点。

(1)优点:无须关心表中元素之间的关系,所以不用增加额外的存储空间;可以快速地取表中任意位置的元素。

(2)缺点:插入和删除操作需要移动大量元素。使用前需事先分配好内存空间,当线性表长度变化较大时,难以确定存储空间的容量。分配空间过大会造成存储空间的巨大浪费,分配的空间过小,难以适应问题的需求。

1.3线性表的链式存储实现

1.3.0.定义

#define ERROR 0
#define TRUE 1
#define FALSE 0
#define OK 1

#define MAXSIZE 20 /* 存储空间初始分配量 */

typedef int Status;/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int ElemType;/* ElemType类型根据实际情况而定,这里假设为int */

//定义结点
typedef struct Node{
    ElemType data;
    struct Node *next;
}Node;

typedef struct Node * LinkList;

1.、初始化:线性表在链式存储时需要额外的指针域来记录结点间的关系;初始化需要注意的是我们常常在首元结点前添加头结点。这样可以便于操作首元结点,也便于空表和非空表的统一操作。

//2.1 初始化单链表线性表
Status InitList(LinkList *L){
    
    //产生头结点,并使用L指向此头结点
    *L = (LinkList)malloc(sizeof(Node));
    //存储空间分配失败
    if(*L == NULL) return ERROR;
    //将头结点的指针域置空
    (*L)->next = NULL;
    
    return OK;
}

2.插入:

//2.2 单链表插入
/*
 初始条件:顺序线性表L已存在,1≤i≤ListLength(L);
 操作结果:在L中第i个位置之后插入新的数据元素e,L的长度加1;
 */
Status ListInsert(LinkList *L,int i,ElemType e){
 
    int j;
    LinkList p,s;
    p = *L;
    j = 1;
    
    //寻找第i-1个结点
    while (p && jnext;
        ++j;
    }
    
    //第i个元素不存在
    if(!p || j>i) return ERROR;
    
    //生成新结点s
    s = (LinkList)malloc(sizeof(Node));
    //将e赋值给s的数值域
    s->data = e;
    //将p的后继结点赋值给s的后继
    s->next = p->next;
    //将s赋值给p的后继
    p->next = s;
    
    return OK;
}

3.取值

//2.3 单链表取值
/*
 初始条件: 顺序线性表L已存在,1≤i≤ListLength(L);
 操作结果:用e返回L中第i个数据元素的值
 */
Status GetElem(LinkList L,int i,ElemType *e){
    
    //j: 计数.
    int j;
    //声明结点p;
    LinkList p;
    
    //将结点p 指向链表L的第一个结点;
    p = L->next;
    //j计算=1;
    j = 1;
    
    
    //p不为空,且计算j不等于i,则循环继续
    while (p && jnext;
        ++j;
    }
    
    //如果p为空或者j>i,则返回error
    if(!p || j > i) return ERROR;
    
    //e = p所指的结点的data
    *e = p->data;
    return OK;
    
    
}

4.删除元素

//2.4 单链表删除元素
/*
 初始条件:顺序线性表L已存在,1≤i≤ListLength(L)
 操作结果:删除L的第i个数据元素,并用e返回其值,L的长度减1
 */

Status ListDelete(LinkList *L,int i,ElemType *e){
    
    int j;
    LinkList p,q;
    p = (*L)->next;
    j = 1;
    
    //查找第i-1个结点,p指向该结点
    while (p->next && j<(i-1)) {
        p = p->next;
        ++j;
    }
    
    //当i>n 或者 i<1 时,删除位置不合理
    if (!(p->next) || (j>i-1)) return  ERROR;
    
    //q指向要删除的结点
    q = p->next;
    //将q的后继赋值给p的后继
    p->next = q->next;
    //将q结点中的数据给e
    *e = q->data;
    //让系统回收此结点,释放内存;
    free(q);
    
    return OK;
}

5.输出元素

/* 初始条件:顺序线性表L已存在 */
/* 操作结果:依次对L的每个数据元素输出 */
Status ListTraverse(LinkList L)
{
    LinkList p=L->next;
    while(p)
    {
        printf("%d\n",p->data);
        p=p->next;
    }
    printf("\n");
    return OK;
}

6.清空

/* 初始条件:顺序线性表L已存在。操作结果:将L重置为空表 */
Status ClearList(LinkList *L)
{
    LinkList p,q;
    p=(*L)->next;           /*  p指向第一个结点 */
    while(p)                /*  没到表尾 */
    {
        q=p->next;
        free(p);
        p=q;
    }
    (*L)->next=NULL;        /* 头结点指针域为空 */
    return OK;
}
  1. 前插法
//3.1 单链表前插入法
/* 随机产生n个元素值,建立带表头结点的单链线性表L(前插法)*/
void CreateListHead(LinkList *L, int n){
    
    LinkList p;
    
    //建立1个带头结点的单链表
    *L = (LinkList)malloc(sizeof(Node));
    (*L)->next = NULL;
    
    //循环前插入随机数据
    for(int i = 0; i < n;i++)
    {
        //生成新结点
        p = (LinkList)malloc(sizeof(Node));
       
        //i赋值给新结点的data
        p->data = i;
        //p->next = 头结点的L->next
        p->next = (*L)->next;
        
        //将结点P插入到头结点之后;
        (*L)->next = p;
        
    }
}

8.后插法

//3.2 单链表后插入法
/* 随机产生n个元素值,建立带表头结点的单链线性表L(后插法)*/
void CreateListTail(LinkList *L, int n){
    
    LinkList p,r;
 
    //建立1个带头结点的单链表
    *L = (LinkList)malloc(sizeof(Node));
    //r指向尾部的结点
    r = *L;
    
    for (int i=0; idata = i;
        
        //将表尾终端结点的指针指向新结点
        r->next = p;
        //将当前的新结点定义为表尾终端结点
        r = p;
    }
    
    //将尾指针的next = null
    r->next = NULL;
    
}

9.调用

int main(int argc, const char * argv[]) {
    // insert code here...
    printf("Hello, World!\n");
    
    Status iStatus;
    LinkList L1,L;
    struct Node *L2;
    ElemType e;
    
//    L1 =(LinkList) malloc(sizeof(Node));
//    L2 =(LinkList) malloc(sizeof(Node));
//
//    L1->data = 1;
//    L2->data = 2;
//    printf("L1.data=%d,L2.data=%d\n",L1->data,L2->data);
    
    //2.1 单链表初始化
    iStatus = InitList(&L);
    printf("L 是否初始化成功?(0:失败,1:成功) %d\n",iStatus);
    
    //2.2 单链表插入数据
    for(int j = 1;j<=10;j++)
    {
        iStatus = ListInsert(&L, 1, j);
    }
    printf("L 插入后\n");
    ListTraverse(L);
    
    //2.3 单链表获取元素
    GetElem(L,5,&e);
    printf("第5个元素的值为:%d\n",e);
    
    //2.4 删除第5个元素
    iStatus = ListDelete(&L, 5, &e);
    printf("删除第5个元素值为:%d\n",e);
    ListTraverse(L);
    
    //3.1 前插法整理创建链表L
    iStatus = ClearList(&L);
    CreateListHead(&L, 20);
    printf("整理创建L的元素(前插法):\n");
    ListTraverse(L);
    
    //3.2 后插法整理创建链表L
    iStatus = ClearList(&L);
    CreateListTail(&L, 20);
    printf("整理创建L的元素(后插法):\n");
    ListTraverse(L);
 }

四、单链表与顺序表的对比

(1)存储方式:顺序表用一组连续的存储单元依次存储线性表的数据元素;而单链表用一组任意的存储单元存放线性表的数据元素。

(2)时间性能:采用循序存储结构时查找的时间复杂度为O(1),插入和删除需要移动平均一半的数据元素,时间复杂度为O(n)。采用单链表存储结构的查找时间复杂度为O(n),插入和删除不需要移动元素,时间复杂度仅为O(1)。

(3)空间性能:采用顺序存储结构时需要预先分配存储空间,分配空间过大会造成浪费,过小会造成问题。采用单链表存储结构时,可根据需要进行临时分配,不需要估计问题的规模大小,只要内存够就可以分配,还可以用于一些特殊情况,如一元多项的表示。

你可能感兴趣的:(数据结构与算法学习 (02)线性表)