鉴于ArduPilot开源飞控之AP_Baro中涉及Sensor Driver有以下总线类型:
ArduPilot之开源代码Sensor Drivers设计的front-end / back-end分层设计思路,AP_Baro主要描述的是front-end。
为了更好的从整体理解气压计这个传感器的嵌入式应用,这里深入到back-end驱动层,针对DPS310/DPS280 I2C芯片,进行一个研读和理解。
AP_Baro_Backend
驱动层需实现方法:
注:通常来说使用ChibiOS的都有定时器,如果没有定时器,可以使用void accumulate(void)
来实现传感器的数据定时获取。
class AP_Baro_Backend
{
public:
AP_Baro_Backend(AP_Baro &baro);
virtual ~AP_Baro_Backend(void) {};
// each driver must provide an update method to copy accumulated
// data to the frontend
virtual void update() = 0;
// accumulate function. This is used for backends that don't use a
// timer, and need to be called regularly by the main code to
// trigger them to read the sensor
virtual void accumulate(void) {}
void backend_update(uint8_t instance);
// Check that the baro valid by using a mean filter.
// If the value further that filtrer_range from mean value, it is rejected.
bool pressure_ok(float press);
uint32_t get_error_count() const { return _error_count; }
#if AP_BARO_MSP_ENABLED
virtual void handle_msp(const MSP::msp_baro_data_message_t &pkt) {}
#endif
#if AP_BARO_EXTERNALAHRS_ENABLED
virtual void handle_external(const AP_ExternalAHRS::baro_data_message_t &pkt) {}
#endif
/*
device driver IDs. These are used to fill in the devtype field
of the device ID, which shows up as BARO_DEVID* parameters to
users.
*/
enum DevTypes {
DEVTYPE_BARO_SITL = 0x01,
DEVTYPE_BARO_BMP085 = 0x02,
DEVTYPE_BARO_BMP280 = 0x03,
DEVTYPE_BARO_BMP388 = 0x04,
DEVTYPE_BARO_DPS280 = 0x05,
DEVTYPE_BARO_DPS310 = 0x06,
DEVTYPE_BARO_FBM320 = 0x07,
DEVTYPE_BARO_ICM20789 = 0x08,
DEVTYPE_BARO_KELLERLD = 0x09,
DEVTYPE_BARO_LPS2XH = 0x0A,
DEVTYPE_BARO_MS5611 = 0x0B,
DEVTYPE_BARO_SPL06 = 0x0C,
DEVTYPE_BARO_UAVCAN = 0x0D,
DEVTYPE_BARO_MSP = 0x0E,
DEVTYPE_BARO_ICP101XX = 0x0F,
DEVTYPE_BARO_ICP201XX = 0x10,
DEVTYPE_BARO_MS5607 = 0x11,
DEVTYPE_BARO_MS5837 = 0x12,
DEVTYPE_BARO_MS5637 = 0x13,
DEVTYPE_BARO_BMP390 = 0x14,
};
protected:
// reference to frontend object
AP_Baro &_frontend;
void _copy_to_frontend(uint8_t instance, float pressure, float temperature);
// semaphore for access to shared frontend data
HAL_Semaphore _sem;
virtual void update_healthy_flag(uint8_t instance);
// mean pressure for range filter
float _mean_pressure;
// number of dropped samples. Not used for now, but can be usable to choose more reliable sensor
uint32_t _error_count;
// set bus ID of this instance, for BARO_DEVID parameters
void set_bus_id(uint8_t instance, uint32_t id) {
_frontend.sensors[instance].bus_id.set(int32_t(id));
}
};
DPS310/DPS280的差异主要是修正了芯片温度传感器的一个硬件BUG,相应的寄存器也需要配套进行参数调整。
void AP_Baro_DPS280::set_config_registers(void)
{
dev->write_register(DPS280_REG_CREG, 0x0C, true); // shift for 16x oversampling
dev->write_register(DPS280_REG_PCONF, 0x54, true); // 32 Hz, 16x oversample
dev->write_register(DPS280_REG_TCONF, 0x54 | calibration.temp_source, true); // 32 Hz, 16x oversample
dev->write_register(DPS280_REG_MCONF, 0x07); // continuous temp and pressure.
if (is_dps310) {
// work around broken temperature handling on some sensors
// using undocumented register writes
// see https://github.com/infineon/DPS310-Pressure-Sensor/blob/dps310/src/DpsClass.cpp#L442
dev->write_register(0x0E, 0xA5);
dev->write_register(0x0F, 0x96);
dev->write_register(0x62, 0x02);
dev->write_register(0x0E, 0x00);
dev->write_register(0x0F, 0x00);
}
}
因此AP_Baro_DPS310
在实现上继承成了AP_Baro_DPS280
类。
虽然这个继承的方式并不理想,并未在继承类中发现差异标志,反而在AP_Baro_DPS280
类出现了is_dps310
成员变量。
建议采用类继承的方式进行方法重写,不过基于历史原因,往往不像书本上的东西。正如大家常说的“理想是丰满的,现实却是骨感的。”
class AP_Baro_DPS310 : public AP_Baro_DPS280 {
// like DPS280 but workaround for temperature bug
public:
using AP_Baro_DPS280::AP_Baro_DPS280;
static AP_Baro_Backend *probe(AP_Baro &baro, AP_HAL::OwnPtr dev);
};
至于这个GCS软件上面的显示问题,详见:ArduPilot开源飞控之GCS显示DPS310异常问题
注:从结构化的角度看,本地标识芯片类型可以整合到init
代码中。
AP_Baro_DPS280::probe
│ /********************************************************************************
│ * device has been initialized, just return imediately *
│ ********************************************************************************/
├──>
│ └──> return nullptr
│
│ /********************************************************************************
│ * initialize DPS310 or DPS280 *
│ ********************************************************************************/
├──> AP_Baro_DPS280 *sensor = new AP_Baro_DPS280(baro, std::move(_dev))
│
│ //本地标识,辨别DPS310/DPS280
├──>
│ └──> sensor->is_dps310 = _is_dps310
│
│ //初始化驱动,内部进行类型设置
├──> init(_is_dps310)>
│ ├──> delete sensor
│ └──> return nullptr
└──> return sensor
芯片初始化和数据采集定时器回调注册。
AP_Baro_DPS280::init
│ /********************************************************************************
│ * device has been initialized, just return imediately *
│ ********************************************************************************/
├──>
│ └──> return false;
│
│ /********************************************************************************
│ * chip preliminary check and initialization *
│ ********************************************************************************/
├──> dev->get_semaphore()->take_blocking();
├──> bus_type() == AP_HAL::Device::BUS_TYPE_SPI> // setup to allow reads on SPI
│ └──> dev->set_read_flag(0x80);
├──> dev->set_speed(AP_HAL::Device::SPEED_HIGH);
│
│ // the DPS310 can get into a state on boot where the whoami is not
│ // read correctly at startup. Toggling the CS line gets its out of
│ // this state
├──> dev->set_chip_select(true);
├──> dev->set_chip_select(false);
│
├──> uint8_t whoami=0;
├──> read_registers(DPS280_REG_PID, &whoami, 1) || whoami != DPS280_WHOAMI>
│ ├──> dev->get_semaphore()->give();
│ └──> return false;
├──>
│ ├──> dev->get_semaphore()->give();
│ └──> return false;
│
├──> dev->setup_checked_registers(4, 20);
├──> set_config_registers();
├──> instance = _frontend.register_sensor();
│
│ // DPS310 or DPS280 type set for GCS software display
├──> <_is_dps310>
│ └──> dev->set_device_type(DEVTYPE_BARO_DPS310);
├──> <_is_dps280>
│ └──> dev->set_device_type(DEVTYPE_BARO_DPS280);
├──> set_bus_id(instance, dev->get_bus_id());
├──> dev->get_semaphore()->give();
│
│ /********************************************************************************
│ * callback for periodic sensor data acquisition *
│ ********************************************************************************/
│ // request 64Hz update. New data will be available at 32Hz
├──> dev->register_periodic_callback((1000 / 64) * AP_USEC_PER_MSEC, FUNCTOR_BIND_MEMBER(&AP_Baro_DPS280::timer, void));
└──> return true;
front-end / back-end数据更新。
AP_Baro_DPS280::update
├──>
│ └──> return
├──> WITH_SEMAPHORE(_sem)
├──> _copy_to_frontend(instance, pressure_sum/count, temperature_sum/count)
├──> pressure_sum = 0
├──> temperature_sum = 0
└──> count=0
气压数据采集定时回调函数。
AP_Baro_DPS280::timer
│ /********************************************************************************
│ * reset registers after software reset from check_health() *
│ ********************************************************************************/
├──>
│ ├──> pending_reset = false
│ ├──> set_config_registers()
│ └──> return
│
│ /********************************************************************************
│ * get sensor raw data *
│ ********************************************************************************/
├──> read_registers(DPS280_REG_MCONF, &ready, 1) ||
│ !(ready & (1U<<4)) ||
│ !dev->read_registers(DPS280_REG_PRESS, buf, 3) ||
│ !dev->read_registers(DPS280_REG_TEMP, &buf[3], 3)>
│ // data not ready
│ ├──> err_count++
│ ├──> check_health()
│ └──> return
├──> int32_t press = (buf[2]) + (buf[1]<<8) + (buf[0]<<16)
├──> int32_t temp = (buf[5]) + (buf[4]<<8) + (buf[3]<<16)
│
│ /********************************************************************************
│ * fix sensor raw data *
│ ********************************************************************************/
├──> fix_config_bits32(press, 24)
├──> fix_config_bits32(temp, 24)
├──> calculate_PT(temp, press, pressure, temperature)
├──> last_temperature = temperature
│
│ /********************************************************************************
│ * data check *
│ ********************************************************************************/
├──>
│ └──> return
├──> check_health()
├──>
│ └──> err_count = 0
├──> WITH_SEMAPHORE(_sem)
│
│ /********************************************************************************
│ * data accumulate *
│ ********************************************************************************/
├──> pressure_sum += pressure
├──> temperature_sum += temperature
└──> count++
【1】ArduPilot开源飞控系统之简单介绍
【2】ArduPilot之开源代码Task介绍
【3】ArduPilot飞控启动&运行过程简介
【4】ArduPilot之开源代码Library&Sketches设计
【5】ArduPilot之开源代码Sensor Drivers设计