滤波也不总是单一的输入,也存在对多个输入流进行滤波的需求,最常见的就是对视频添加可视水印,水印的组成通常为原视频以及作为水印的图片或者小动画,在ffmpeg中可以使用overlay滤波器进行水印添加。
对于多视频流输入的滤波器,ffmpeg提供了一个名为framesync的处理方案。framesync为滤波器分担了不同线路的输入的帧同步任务,并为滤波器提供同步过后的帧,使得滤波器专注于滤波处理。
Extend Mode
由于各个视频流可能长短不一,可能起始或者结束时间也不同,为了应对由此产生的各种需求,framesync为每个输入流的起始以及结束都提供了3种可选的扩展方式
Mode | before(流开始前) | after(流结束后) |
EXT_STOP | 在这个流开始前的这段时间不可以进行滤波处理。如果有多个流都指定了before=EXT_STOP,那么以时间线最后的流为准。 | 在这个流结束后滤波处理必须停止。如果有多个流都指定了after=EXT_STOP,那么以时间线最前的流为准。 |
EXT_NULL | 其余的流可以在缺少了该流的情况下执行滤波处理。 | 其余的流可以在缺少了该流的情况下执行滤波处理。 |
EXT_INFINITY | 在这个流开始前的这段时间,提供这一个流的第一帧给滤波器进行处理。 | 在这个流结束后的这段时间,提供这一个流的最后一帧给滤波器进行处理。 |
Sync
在framesync所提供的同步服务中,滤波器可以为输入流设置同步等级,同步等级最高的输入流会被当作同步基准。
如上图所示,不同的输入流可能有不同的帧率,因此有必要对输入的流进行同步。上面的例子中,input stream 1的同步级别最高,因此以该流为同步基准,即每次得到input stream 1的帧时,可以进行滤波处理。滤波处理所提供的帧为各个流最近所获得的帧,在上面的例子中,当input stream 1获得序号为2的帧时,input stream 2刚刚所获得的帧序号为3,input stream 3刚刚所获得的帧序号为1,因此滤波时framesync所提供的帧分别为stream 1的2、stream 2的3、stream 3的1。
Example
滤波器调用framesync需要执行如下代码:
typedef struct Context {
FFFrameSync fs; //Context involves FFFrameSync
} Context;
static int process_frame(FFFrameSync *fs)
{
Context *s = fs->opaque;
AVFrame *in1, *in2, *in3;
int ret;
//get frame before filtering
if ((ret = ff_framesync_get_frame(&s->fs, 0, &in1, 0)) < 0 ||
(ret = ff_framesync_get_frame(&s->fs, 1, &in2, 0)) < 0 ||
(ret = ff_framesync_get_frame(&s->fs, 2, &in3, 0)) < 0)
//filtering
}
//Before filtering, we can only get timebase in function config_output.
//See avfilter_config_links
static int config_output(AVFilterLink *outlink)
{
FFFrameSyncIn *in;
ret = ff_framesync_init(&s->fs, ctx, 3); //init framesync
if (ret < 0)
return ret;
//set inputs parameter: timebase, sync level, before mode, after mode
in = s->fs.in;
in[0].time_base = srclink1->time_base;
in[1].time_base = srclink2->time_base;
in[2].time_base = srclink3->time_base;
in[0].sync = 2;
in[0].before = EXT_STOP;
in[0].after = EXT_STOP;
in[1].sync = 1;
in[1].before = EXT_NULL;
in[1].after = EXT_INFINITY;
in[2].sync = 1;
in[2].before = EXT_NULL;
in[2].after = EXT_INFINITY;
//save Context to fs.opaque which will be used on filtering
s->fs.opaque = s;
//filtering function
s->fs.on_event = process_frame;
return ff_framesync_configure(&s->fs); //framesync configure
}
static int activate(AVFilterContext *ctx)
{
RemapContext *s = ctx->priv;
return ff_framesync_activate(&s->fs); //call filtering function if frame ready
}
static av_cold void uninit(AVFilterContext *ctx)
{
RemapContext *s = ctx->priv;
ff_framesync_uninit(&s->fs);
}
static const AVFilterPad remap_inputs[] = {
{
.name = "source 1",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input,
},
{
.name = "source 2",
.type = AVMEDIA_TYPE_VIDEO,
},
{
.name = "source 3",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
static const AVFilterPad remap_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
{ NULL }
};
可以发现使用framesync有如下要求:
- 在滤波器的参数结构体(Context)内包含FFFramesync结构体。
- 在进行滤波处理时,调用ff_framesync_get_frame来获得framesync同步后的帧。
- 在config_output时或之前调用ff_framesync_init来进行framesync初始化。
- 在config_output时设置各个输入的time base,extend mode,sync level,并调用ff_framesync_configure进行配置。
- 在config_output时或之前设置fs->opaque=context(参数结构体),用于后续滤波处理。
- 在config_output时或之前设置用于回调的滤波处理函数fs->on_event=process_frame。
- 在activate时调用ff_framesync_activate。在该函数内部如果frame ready,就会执行回调函数。
framesync的同步实现
framesync的同步实现主要集中在ff_framesync_activate所调用的framesync_advance函数当中。
static int framesync_advance(FFFrameSync *fs)
{
while (!(fs->frame_ready || fs->eof)) {
ret = consume_from_fifos(fs);
if (ret <= 0)
return ret;
}
return 0;
}
framesync_advance内是一个循环,退出该循环需要满足任意如下一个条件:
- fs->frame_ready==1。代表接下来可以执行滤波处理。
- fs->eof==1。代表结束整个滤波处理。
- ret = consume_from_fifos(fs) <= 0。返回值小于0代表出错;返回值等于0代表目前无法都从所有的输入流中得到帧。
从consume_from_fifos开始分析,我们将会对framesync的同步机制有详细的了解。
static int consume_from_fifos(FFFrameSync *fs)
{
AVFilterContext *ctx = fs->parent;
AVFrame *frame = NULL;
int64_t pts;
unsigned i, nb_active, nb_miss;
int ret, status;
nb_active = nb_miss = 0;
for (i = 0; i < fs->nb_in; i++) {
if (fs->in[i].have_next || fs->in[i].state == STATE_EOF)
continue;
nb_active++;
ret = ff_inlink_consume_frame(ctx->inputs[i], &frame);
if (ret < 0)
return ret;
if (ret) {
av_assert0(frame);
framesync_inject_frame(fs, i, frame);
} else {
ret = ff_inlink_acknowledge_status(ctx->inputs[i], &status, &pts);
if (ret > 0) {
framesync_inject_status(fs, i, status, pts);
} else if (!ret) {
nb_miss++;
}
}
}
if (nb_miss) {
if (nb_miss == nb_active && !ff_outlink_frame_wanted(ctx->outputs[0]))
return FFERROR_NOT_READY;
for (i = 0; i < fs->nb_in; i++)
if (!fs->in[i].have_next && fs->in[i].state != STATE_EOF)
ff_inlink_request_frame(ctx->inputs[i]);
return 0;
}
return 1;
}
在consume_from_fifos返回1代表目前已经从所有的输入流中获得了帧。
- 如果已经从某个输入获得了帧,则不需要再次去获取。
- 如果某个输入流还未获得帧,则会调用ff_inlink_comsume_frame尝试从输入link中获取帧。
- 如果得到了帧,就会调用framesync_inject_frame把从输入流中获得的帧存放在fs->in[i].frame_next中,并用fs->in[i].have_next表示第i个输入流已经获得了帧。
- 如果没有获得帧,则调用ff_inlink_acknowledge_status检查是否出错或者EOF,是则表明该输入流结束,不是则表明前面的滤波器实例无法为我们提供帧。
- 由于无法获得我们所需要的帧,因此要调用ff_inlink_request_frame向前面的滤波器实例发出请求。
- 只有当从所有的输入流都得到帧后,consume_from_fifos才会返回1。
consume_from_fifos返回1的时候,所有输入流的帧缓存fs->in[i].frame_next都存储了一帧,该帧缓存标志fs->in[i].have_next的值都为1。然后进行下列同步处理:
static int framesync_advance(FFFrameSync *fs)
{
unsigned i;
int64_t pts;
int ret;
while (!(fs->frame_ready || fs->eof)) {
ret = consume_from_fifos(fs);
if (ret <= 0)
return ret;
pts = INT64_MAX;
for (i = 0; i < fs->nb_in; i++) //get the least pts frame
if (fs->in[i].have_next && fs->in[i].pts_next < pts)
pts = fs->in[i].pts_next;
if (pts == INT64_MAX) {
framesync_eof(fs);
break;
}
for (i = 0; i < fs->nb_in; i++) {
if (fs->in[i].pts_next == pts ||
(fs->in[i].before == EXT_INFINITY &&
fs->in[i].state == STATE_BOF)) {
av_frame_free(&fs->in[i].frame);
fs->in[i].frame = fs->in[i].frame_next; //move from frame_next to frame
fs->in[i].pts = fs->in[i].pts_next;
fs->in[i].frame_next = NULL;
fs->in[i].pts_next = AV_NOPTS_VALUE;
fs->in[i].have_next = 0;
fs->in[i].state = fs->in[i].frame ? STATE_RUN : STATE_EOF;
if (fs->in[i].sync == fs->sync_level && fs->in[i].frame)//the highest level frame
fs->frame_ready = 1;
if (fs->in[i].state == STATE_EOF &&
fs->in[i].after == EXT_STOP)
framesync_eof(fs);
}
}
if (fs->frame_ready)
for (i = 0; i < fs->nb_in; i++)
if ((fs->in[i].state == STATE_BOF &&
fs->in[i].before == EXT_STOP))
fs->frame_ready = 0;
fs->pts = pts;
}
return 0;
}
这里我们把frame_next当作从上一滤波器实例中获取的帧缓存,frame当作接下来会用于进行滤波处理的帧缓存。
- 从所缓存的帧(frame_next)中提取pts最小的一帧。
- 存放到用于提供给滤波器的缓存中(frame = frame_next)。
- 把这一帧所在输入流帧缓存设置为空(frame_next = NULL)。
- 如果这一帧所在的输入流是同步级别最高的流,表明此时在frame中该同步级别最高的流所输入的帧的pts最大,符合我们前面的同步描述,因此设置frame_ready = 1,表明接下来可以进行滤波处理。
- 如果这一帧所在的输入流不是同步级别最高的流,则需要继续执行下一循环(执行consume_from_fifos)。
以我们前面所展示的图片为例
每次都把frame_next中pts最小的一帧放入frame时,同时也表明在frame中新所放入的一帧永远是pts最大的一帧。当被放入到frame中的帧是属于最高同步等级的输入流的时候,可以执行滤波处理。如果我们把这一帧的pts定义为同步pts,此时其余的输入流中的帧的pts尽管比同步pts小,不过也是各自输入流中最大的,这与我们前面所说的同步处理是一致的。
framesync的实现总结来说就是循环执行:
- 从输入流中提取帧填补空缺的frame_next。
- 当所有输入流的frame_next都被写入帧后(即所有输入流的have_next都为1)consume_from_fifos才会返回1,然后进行各个流之间的pts比较。
- 接下来把pts最小的帧从frame_next存入frame,如此一来该frame_next又会出现空缺。
这种实现方式能保证所有的帧都是以pts从小到大由frame_next移入frame的,能防止帧被遗漏。