- Spark on Docker:容器化大数据开发环境搭建指南
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶大数据sparkdockerai
SparkonDocker:容器化大数据开发环境搭建指南关键词:Spark、Docker、容器化、大数据开发、分布式计算、开发环境搭建、容器编排摘要:本文系统讲解如何通过Docker实现Spark开发环境的容器化部署,涵盖从基础概念到实战部署的完整流程。首先分析Spark分布式计算框架与Docker容器技术的核心原理及融合优势,接着详细演示单节点开发环境和多节点集群环境的搭建步骤,包括Docker
- SeaTunnel 社区月报(5-6 月):全新功能上线、Bug 大扫除、Merge 之星是谁?
SeaTunnel
bugSeaTunnel开源数据集成大数据
在5月和6月,SeaTunnel社区迎来了一轮密集更新:2.3.11正式发布,新增对Databend、Elasticsearch向量、HTTP批量写入、ClickHouse多表写入等多个连接器能力,全面提升了数据同步灵活性。同时,近100个修复与优化PR合入,涵盖Spark引擎并行性修复、Paimon精度兼容性增强、Mongo-CDCExactlyOnce默认值优化、OracleDDL类型支持补全
- Spark从入门到熟悉(篇三)
小新学习屋
数据分析spark大数据分布式
本文介绍Spark的DataFrame、SparkSQL,并进行SparkSQL实战,加强对编程的理解,实现快速入手知识脉络包含如下7部分内容:RDD和DataFrame、SparkSQL的对比创建DataFrameDataFrame保存成文件DataFrame的API交互DataFrame的SQL交互SparkSQL实战参考资料RDD和DataFrame、SparkSQL的对比RDD对比Data
- 大数据集群架构hadoop集群、Hbase集群、zookeeper、kafka、spark、flink、doris、dataeas(二)
争取不加班!
hadoophbasezookeeper大数据运维
zookeeper单节点部署wget-chttps://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz下载地址tarxfapache-zookeeper-3.8.4-bin.tar.gz-C/data/&&mv/data/apache-zookeeper-3.8.4-bin//data/zoo
- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- SeaTunnel 社区月报(5-6 月):全新功能上线、Bug 大扫除、Merge 之星是谁?
数据库
在5月和6月,SeaTunnel社区迎来了一轮密集更新:2.3.11正式发布,新增对Databend、Elasticsearch向量、HTTP批量写入、ClickHouse多表写入等多个连接器能力,全面提升了数据同步灵活性。同时,近100个修复与优化PR合入,涵盖Spark引擎并行性修复、Paimon精度兼容性增强、Mongo-CDCExactlyOnce默认值优化、OracleDDL类型支持补全
- spark数据处理练习题番外篇【上】
一.单选题(共23题,100分)1.(单选题)maven依赖应该加在哪个文件中?A.pom.xmlB.log4j.propertiesC.src/main/scala.resourceD.src/test/scala.resource正确答案:A:pom.xml;Maven依赖应该添加在pom.xml文件中,这是Maven项目的核心配置文件。解释:pom.xml(ProjectObjectMode
- 基于django+Spark+大数据+爬虫技术的国漫推荐与可视化平台设计和实现(源码+论文+部署讲解等)
阿勇学长
大数据项目实战案例Java精品毕业设计实例Python数据可视化项目案例大数据djangospark国漫推荐与可视化平台毕业设计Java
博主介绍:✌全网粉丝50W+,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等
- spark写入hive表问题
qq_42265026
sparkhive大数据
1、httpclient发送post请求,当返回的数据过大时,报错socketclosed这个原因是客户端主动将连接关闭,根本原因是将httpclient。execute的返回结果closeableResponse作为a方法的返回结果,在b方法中进行解析虽然在b方法中没有关闭closeableResponse,但是在a方法中返回closeableResponse后,会进行httppost.real
- spark解析压缩包数据,写入到hive表中
dbbigdata
spark大数据hive
spark解析xxxxx.tar.gz形式的压缩包。压缩包里面是一个个的json文件或者zip的文件,zip里面是json文件。先用spark读取tar.gz的路径,然后开流传给newTarArchiveInputStream(newGZIPInputStream(file))去处理,大概的代码如下defmain(args:Array[String]):Unit={valroot:String=a
- 【SequoiaDB】4 巨杉数据库SequoiaDB整体架构
Alen_Liu_SZ
巨杉数据库SequoiaDB架构编目节点协调节点数据节点巨杉数据库
1整体架构SequoiaDB巨杉数据库作为分布式数据库,由数据库存储引擎与数据库实例两大模块组成。其中,数据库存储引擎模块是数据存储的核心,负责提供整个数据库的读写服务、数据的高可用与容灾、ACID与发你不是事务等全部核心数据服务能力。数据库实例模块则作为协议与语法的适配层,用户可根据需要创建包括MySQL、PostgreSQL与SparkSQL在内的结构化数据实例;支持JSON语法的MongoD
- App Store暗藏虚假抖音,内含间谍软件窃取照片和加密货币
FreeBuf-
TikTokAppStoreiOSAndroid
卡巴斯基网络安全研究人员近日发现名为SparkKitty的新型间谍软件活动,该恶意程序已感染苹果AppStore和谷歌Play官方商店的多个应用。这款间谍软件旨在窃取用户移动设备中的所有图片,疑似专门搜寻加密货币相关信息。该攻击活动自2024年初开始活跃,主要针对东南亚和中国用户。伪装流行应用渗透设备SparkKitty间谍软件通过看似无害的应用程序渗透设备,通常伪装成TikTok等流行应用的修改
- 存得快查得准,但就是算不动?试试时序数据库 TDengine × Spark 的组合拳
每个工程师可能都遇到过类似场景:时序数据沉淀在数据库中,格式规范、查询快捷,但当任务升级——比如滑窗聚合、多源拼接、机器学习训练——一些业务可能就需要更强的计算能力和更灵活的分析工具。TDengine专注于高效存储与极速查询,而在数据“算力”层面,我们选择了更强的伙伴。现在,TDengine正式开放与ApacheSpark的无缝集成通道。一个是高性能、低成本的时序数据库,一个是横扫大数据世界的分析
- Spark Streaming 与 Flink 实时数据处理方案对比与选型指南
浅沫云归
后端技术栈小结spark-streamingflinkreal-time
SparkStreaming与Flink实时数据处理方案对比与选型指南实时数据处理在互联网、电商、物流、金融等领域均有大量应用,面对海量流式数据,SparkStreaming和Flink成为两大主流开源引擎。本文基于生产环境需求,从整体架构、编程模型、容错机制、性能表现、实践案例等维度进行深入对比,并给出选型建议。一、问题背景介绍业务场景日志实时统计与告警用户行为实时画像实时订单或交易监控流式ET
- Spark教程3:SparkSQL最全介绍
Cachel wood
大数据开发spark大数据分布式计算机网络AHP需求分析
文章目录SparkSQL最全介绍一、SparkSQL概述二、SparkSession:入口点三、DataFrame基础操作四、SQL查询五、SparkSQL函数六、与Hive集成七、数据源操作八、DataFrame与RDD互转九、高级特性十、性能优化十一、Catalyst优化器十二、SparkSQL应用场景十三、常见问题与解决方法SparkSQL最全介绍一、SparkSQL概述SparkSQL是A
- Spark教程1:Spark基础介绍
Cachel wood
大数据开发spark大数据分布式计算机网络数据库数据仓库
文章目录一、Spark是什么?二、Spark的核心优势三、Spark的核心概念四、Spark的主要组件五、Spark的部署模式六、Spark与Hadoop的关系七、Spark应用开发流程八、Spark的应用场景九、Spark版本更新与社区一、Spark是什么?ApacheSpark是一个开源的分布式大数据处理引擎,最初由加州大学伯克利分校AMPLab开发,2013年捐赠给Apache软件基金会,如
- 讯飞星火(iFlytek Spark):科大讯飞打造的国产AI大模型平台
明似水
AI人工智能
1.产品概述讯飞星火(iFlytekSpark)是科大讯飞自主研发的认知大模型,定位于通用人工智能(AGI)平台,集成了文本生成、语言理解、知识问答、逻辑推理、数学计算、代码生成和多模态交互等核心能力。作为国内首批基于全国产算力平台训练的大模型,讯飞星火在中文理解、语音交互、数学推理等方面表现突出,并持续对标国际顶尖模型(如GPT-4、Gemini)。核心优势全国产化:基于华为昇腾AI芯片和“飞星
- 基于Hadoop大数据分析应用场景与实战
跨过山河大海
一、Hadoop的应用业务分析大数据是不能用传统的计算技术处理的大型数据集的集合。它不是一个单一的技术或工具,而是涉及的业务和技术的许多领域。目前主流的三大分布式计算系统分别为:Hadoop、Spark和Strom:Hadoop当前大数据管理标准之一,运用在当前很多商业应用系统。可以轻松地集成结构化、半结构化甚至非结构化数据集。Spark采用了内存计算。从多迭代批处理出发,允许将数据载入内存作反复
- 深度剖析无感刷新Token:领码SPARK平台赋能微服务认证的智能实践
领码科技
低代码实战篇无感刷新Token领码SPARK微服务认证AI安全双Token机制
摘要在现代微服务架构与数字化转型大潮中,用户身份认证的连续性与安全性尤为关键。无感刷新Token技术通过智能的双Token机制,确保用户访问凭证在不打扰用户的前提下自动续期,避免因Token过期导致的频繁登录中断。本文结合领码SPARK融合平台的iPaaS和aPaaS优势,深刻解析无感刷新Token的实现原理、典型场景、安全风险及AI赋能智能防护,系统阐述实现无感刷新Token的最佳实践。通过流程
- Spark 之 UT
zhixingheyi_tian
sparkspark大数据分布式
AQEOFFpartitionpruninginbroadcasthashjoinswithaliases==OptimizedLogicalPlan==Project[date_id#5283,pid#5281,sid#5282]+-JoinInner,(si
- Spark eventlog 、Event、SparkListener
zhixingheyi_tian
sparkspark大数据分布式
SparkListenerSQLExecutionStartcaseclassSparkListenerSQLExecutionStart(executionId:Long,//iftheexecutionisaroot,thenrootExecutionId==executionId//iftheeventisparsedfromtheeventlogthatgeneratedbySparkno
- 图书《数据资产管理核心技术与应用》核心章节节选-3.1.2. 从Spark 执行计划中获取数据血缘
张永清-老清
大数据spark大数据分布式
本文节选自清华大学出版社出版的图书《数据资产管理核心技术与应用》,作者为张永清等著。从Spark执行计划中获取数据血缘->关注清哥聊技术公众号,了解更多技术文章因为数据处理任务会涉及到数据的转换和处理,所以从数据任务中解析血缘也是获取数据血缘的渠道之一,Spark是大数据中数据处理最常用的一个技术组件,既可以做实时任务的处理,也可以做离线任务的处理。Spark在执行每一条SQL语句的时候,都会生成
- Spark 之 QueryPlan
zhixingheyi_tian
sparkspark大数据分布式
sameResultsrc/main/scala/org/apache/spark/sql/catalyst/plans/QueryPlan.scala/***Returnstruewhenthegivenqueryplanwillreturnthesameresultsasthisqueryplan.**Sinceitslikelyundecidabletogenerallydeterminei
- Python与大数据:Spark和PySpark实战教程
天天进步2015
python大数据pythonspark
引言在大数据时代,数据处理和分析能力成为核心竞争力。ApacheSpark作为新一代大数据计算引擎,以其高性能、易用性和强大的生态系统,成为数据工程师和分析师的首选工具。而PySpark作为Spark的Python接口,让Python开发者能够轻松驾驭大规模数据处理。本教程将带你系统了解Spark与PySpark的核心原理、环境搭建、典型应用场景及实战案例,助你快速上手大数据分析。目录Spark简
- 现代数据湖架构全景解析:存储、表格式、计算引擎与元数据服务的协同生态
讲文明的喜羊羊拒绝pua
大数据架构数据湖SparkIcebergAmoro对象存储
本文全面剖析现代数据湖架构的核心组件,深入探讨对象存储(OSS/S3)、表格式(Iceberg/Hudi/DeltaLake)、计算引擎(Spark/Flink/Presto)及元数据服务(HMS/Amoro)的协作关系,并提供企业级选型指南。一、数据湖架构演进与核心价值数据湖架构演进历程现代数据湖核心价值矩阵维度传统数仓现代数据湖存储成本高(专有硬件)低(对象存储)数据时效性小时/天级分钟/秒级
- 通过CDH安装Spark的详细指南
暴躁哥
大数据技术spark大数据分布式
通过CDH安装Spark的详细指南简介ClouderaDistributionofHadoop(CDH)是一个企业级的大数据平台,它集成了多个开源组件,包括Hadoop、Spark、Hive等。本文将详细介绍如何通过CDH安装和配置Spark。前提条件在开始安装之前,请确保满足以下条件:已安装CDH集群具有管理员权限所有节点之间网络互通系统时间同步足够的磁盘空间(建议至少预留20GB)安装步骤1.
- order、sort、distribute和cluster by(Spark/Hive)
有数的编程笔记
Spark/Hivesparkhive大数据
1.abstractORDERBY:完整查询结果的全局行排序。与SORTBY、CLUSTERBY、DISTRIBUTEBY互斥,不能同时使用。示例SELECT*FROMtable_nameORDERBYcolumn_name;SORTBY:只在每个分区内排序,局部排序结果不是全局有序。与ORDERBY、CLUSTERBY互斥,不能同时指定。示例SELECT*FROMtable_nameSORTBY
- 合并小文件汇总(Hive/Spark)
有数的编程笔记
Spark/Hivehivesparkhadoop
合并小文件的原因:过多的小文件会导致HDFS上元数据负载增加。并且小文件也会导致计算性能下降。1.使用hive时1.1.使用hive.merge参数,开启文件合并--控制在map阶段结束后合并输出的小文件,默认值为trueSEThive.merge.mapfiles=true;--控制在reduce阶段结束后合并输出小文件,默认值为falseSEThive.merge.mapredfiles=tr
- 基于pyspark的北京历史天气数据分析及可视化_离线
大数据CLUB
spark数据分析可视化数据分析数据挖掘hadoop大数据spark
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(
- Spark底层原理详细解析
JavaShark
sparkbigdatahadoop
Spark简介ApacheSpark是用于大规模数据处理的统一分析引擎,基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量硬件之上,形成集群。Spark源码从1.x的40w行发展到现在的超过100w行,有1400多位大牛贡献了代码。整个Spark框架源码是一个巨大的工程。下面我们一起来看下spark的底层执行原理。Spark运行流程具
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_