15 Pandas批量拆分Excel与合并Excel

15 Pandas批量拆分Excel与合并Excel

实例演示:

  1. 将一个大Excel等份拆成多个Excel
  2. 将多个小Excel合并成一个大Excel并标记来源
  
  
  
  
work_dir="./course_datas/c15_excel_split_merge" splits_dir=f"{work_dir}/splits" import os if not os.path.exists(splits_dir): os.mkdir(splits_dir)

0、读取源Excel到Pandas

  
  
  
  
import pandas as pd df_source = pd.read_excel(f"{work_dir}/crazyant_blog_articles_source.xlsx") df_source.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
id title tags
0 2585 Tensorflow怎样接收变长列表特征 python,tensorflow,特征工程
1 2583 Pandas实现数据的合并concat pandas,python,数据分析
2 2574 Pandas的Index索引有什么用途? pandas,python,数据分析
3 2564 机器学习常用数据集大全 python,机器学习
4 2561 一个数据科学家的修炼路径 数据分析
  
  
  
  
df_source.index RangeIndex(start=0, stop=258, step=1) df_source.shape (258, 3) total_row_count = df_source.shape[0] total_row_count 258

一、将一个大Excel等份拆成多个Excel

  1. 使用df.iloc方法,将一个大的dataframe,拆分成多个小dataframe
  2. 将使用dataframe.to_excel保存每个小Excel

1、计算拆分后的每个excel的行数

  
  
  
  
# 这个大excel,会拆分给这几个人 user_names = ["xiao_shuai", "xiao_wang", "xiao_ming", "xiao_lei", "xiao_bo", "xiao_hong"] # 每个人的任务数目 split_size = total_row_count // len(user_names) if total_row_count % len(user_names) != 0: split_size += 1 split_size 43

2、拆分成多个dataframe

  
  
  
  
df_subs = [] for idx, user_name in enumerate(user_names): # iloc的开始索引 begin = idx*split_size # iloc的结束索引 end = begin+split_size # 实现df按照iloc拆分 df_sub = df_source.iloc[begin:end] # 将每个子df存入列表 df_subs.append((idx, user_name, df_sub))

3、将每个datafame存入excel

  
  
  
  
for idx, user_name, df_sub in df_subs: file_name = f"{splits_dir}/crazyant_blog_articles_{idx}_{user_name}.xlsx" df_sub.to_excel(file_name, index=False)

二、合并多个小Excel到一个大Excel

  1. 遍历文件夹,得到要合并的Excel文件列表
  2. 分别读取到dataframe,给每个df添加一列用于标记来源
  3. 使用pd.concat进行df批量合并
  4. 将合并后的dataframe输出到excel

1. 遍历文件夹,得到要合并的Excel名称列表

  
  
  
  
import os excel_names = [] for excel_name in os.listdir(splits_dir): excel_names.append(excel_name) excel_names ['crazyant_blog_articles_0_xiao_shuai.xlsx', 'crazyant_blog_articles_1_xiao_wang.xlsx', 'crazyant_blog_articles_2_xiao_ming.xlsx', 'crazyant_blog_articles_3_xiao_lei.xlsx', 'crazyant_blog_articles_4_xiao_bo.xlsx', 'crazyant_blog_articles_5_xiao_hong.xlsx']

2. 分别读取到dataframe

  
  
  
  
df_list = [] for excel_name in excel_names: # 读取每个excel到df excel_path = f"{splits_dir}/{excel_name}" df_split = pd.read_excel(excel_path) # 得到username username = excel_name.replace("crazyant_blog_articles_", "").replace(".xlsx", "")[2:] print(excel_name, username) # 给每个df添加1列,即用户名字 df_split["username"] = username df_list.append(df_split) crazyant_blog_articles_0_xiao_shuai.xlsx xiao_shuai crazyant_blog_articles_1_xiao_wang.xlsx xiao_wang crazyant_blog_articles_2_xiao_ming.xlsx xiao_ming crazyant_blog_articles_3_xiao_lei.xlsx xiao_lei crazyant_blog_articles_4_xiao_bo.xlsx xiao_bo crazyant_blog_articles_5_xiao_hong.xlsx xiao_hong

3. 使用pd.concat进行合并

  
  
  
  
df_merged = pd.concat(df_list) df_merged.shape (258, 4) df_merged.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } 
id title tags username
0 2585 Tensorflow怎样接收变长列表特征 python,tensorflow,特征工程 xiao_shuai
1 2583 Pandas实现数据的合并concat pandas,python,数据分析 xiao_shuai
2 2574 Pandas的Index索引有什么用途? pandas,python,数据分析 xiao_shuai
3 2564 机器学习常用数据集大全 python,机器学习 xiao_shuai
4 2561 一个数据科学家的修炼路径 数据分析 xiao_shuai
  
  
  
  
df_merged["username"].value_counts() xiao_hong 43 xiao_bo 43 xiao_shuai 43 xiao_lei 43 xiao_wang 43 xiao_ming 43 Name: username, dtype: int64

4. 将合并后的dataframe输出到excel

  
  
  
  
df_merged.to_excel(f"{work_dir}/crazyant_blog_articles_merged.xlsx", index=False)

本文使用 文章同步助手 同步

你可能感兴趣的:(15 Pandas批量拆分Excel与合并Excel)