- 10.【线性代数】—— 四个基本子空间
sda42342342423
math线性代数基本子空间
十、四个基本子空间1.列空间C(A)C(A)C(A)inRmR^mRm2.零空间N(A)N(A)N(A)inRnR^nRn3.行空间C(AT)C(A^T)C(AT)inRnR^nRn4.左零空间N(AT)N(A^T)N(AT)inRmR^mRm综述5.新的向量空间讨论矩阵Am∗nA_{m*n}Am∗n的四个基本空间,m行n列1.列空间C(A)C(A)C(A)inRmR^mRm[col11col21
- 12.【线性代数】——图和网络
sda42342342423
math线性代数
十二图和网络(线性代数的应用)图graph={nodes,edges}graph=\{nodes,edges\}graph={nodes,edges}1.关联矩阵2.AAA矩阵的零空间,求解Ax=0Ax=0Ax=0电势3.ATA^TAT矩阵的零空间,电流总结电流图结论图graph={nodes,edges}graph=\{nodes,edges\}graph={nodes,edges}13245n
- 机器学习之线性代数
珠峰日记
AI理论与实践机器学习线性代数人工智能
文章目录一、引言:线性代数为何是AI的基石二、向量:AI世界的基本构建块(一)向量的定义(二)向量基础操作(三)重要概念三、矩阵:AI数据的强大容器(一)矩阵的定义(二)矩阵运算(三)矩阵特性(四)矩阵分解(五)Python示例(使用NumPy库)四、线性代数在AI中的应用(一)数据表示(二)降维:PCA(三)线性回归(四)计算机视觉(五)自然语言处理一、引言:线性代数为何是AI的基石在人工智能领
- 信号处理应用:电力系统中的信号处理_(10).电力系统信号处理中的现代滤波器设计
kkchenkx
信号处理技术仿真模拟信号处理大数据
电力系统信号处理中的现代滤波器设计1.引言在电力系统中,信号处理技术被广泛应用于监测、保护、控制和优化等多个方面。现代滤波器设计是信号处理技术中的重要组成部分,它能够有效地去除噪声、提取有用信号、提高信号质量,从而确保电力系统的稳定运行和高效性能。本节将介绍现代滤波器设计的基本概念、分类、设计方法及其在电力系统中的应用。2.滤波器的基本概念滤波器是一种信号处理设备,用于从输入信号中提取或抑制特定频
- 信号处理应用:控制系统中的信号处理_(2).控制系统的数学建模
kkchenkx
信号处理技术仿真模拟数学建模信号处理
控制系统的数学建模在控制系统的设计和分析中,数学建模是基础且至关重要的步骤。数学模型可以描述系统的动态行为,帮助我们理解和预测系统的响应。本节将详细介绍控制系统的数学建模方法,包括传递函数、状态空间模型和频域分析。1.传递函数传递函数是一种常用的数学模型,用于描述线性时不变(LTI)系统的输入输出关系。传递函数是在复频域(s域)中表示的,可以方便地进行系统的分析和设计。1.1定义传递函数定义为系统
- 信号处理应用:电力系统中的信号处理_(9).基于电力系统信号的数据挖掘技术
kkchenkx
信号处理技术仿真模拟信号处理数据挖掘人工智能
基于电力系统信号的数据挖掘技术1.引言电力系统中的信号处理是一个重要的研究领域,涉及电力系统的监测、故障诊断、状态评估等多个方面。随着大数据和人工智能技术的发展,数据挖掘技术在电力系统中的应用越来越广泛。本节将介绍如何利用数据挖掘技术对电力系统中的信号进行处理和分析,以提高系统的可靠性和效率。2.电力系统中的信号类型在电力系统中,信号可以分为多种类型,包括:电压信号:反映电力系统的电压水平,用于检
- PyTorch 学习路线
gorgor在码农
#python入门基础pythonpytorch
学习PyTorch需要结合理论理解和实践编码,逐步掌握其核心功能和实际应用。以下是分阶段的学习路径和资源推荐,适合从入门到进阶:1.基础知识准备前提条件Python基础:熟悉Python语法(变量、函数、类、模块等)。数学基础:了解线性代数、微积分、概率论(深度学习的基础)。机器学习基础:理解神经网络、损失函数、优化器(如梯度下降)等概念。学习资源Python入门:Python官方教程机器学习基础
- 高速PCB设计(布局规划)
四代目 水门
高速PCB设计学习笔记fpga开发嵌入式硬件
高速PCB设计笔记以下基于用户提供的结构设计流程与高速PCB设计规范整合,结合行业最佳实践与信号完整性原则,总结关键设计要点:一、设计规划与功能梳理1.核心功能模块划分项目类型识别:明确单板类型(数字/模拟/射频/电源等),划分输入/输出模块、电源模块、信号处理模块、时钟/复位模块。核心器件定位:聚焦FPGA、DSP、高速ADC/DAC、时钟芯片等,优先布局以缩短关键信号路径。2.设计要求确认电源
- 【扩频通信】 QPSK和DSSS扩频通信(先扩频 后调制 误码率对比)【含Matlab源码 4549期】
Matlab仿真科研站
matlab
欢迎来到Matlab仿真科研站博客之家✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。个人主页:Matlab仿真科研站博客之家代码获取方式:扫描文章底部QQ二维码⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。⛄更多Matlab信号处理(仿真科研站版)仿真内容点击Matlab信号处理(仿真科研站版)⛄一、扩频通信系统简介**扩频通信的基
- 【扩频通信】QPSK和DSSS扩频通信(先扩频 后调制 误码率对比)【含Matlab源码 4549期】
Matlab研究室
matlab
欢迎来到Matlab研究室博客之家✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。个人主页:Matlab研究室代码获取方式:Matlab研究室学习之路—代码获取方式(包运行)⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。更多Matlab信号处理仿真内容点击Matlab信号处理(视频版)
- (Pytorch)动手学深度学习:基础内容(持续更新)
孔表表uuu
神经网络深度学习pytorch人工智能
深度学习前言环境安装(Windows)安装anaconda使用conda或miniconda创建环境下载所需的包下载代码并执行(课件代码)关于线性代数内积(数量积、点乘)外积关于数据操作X.sum(0,keepdim=True)和X.sum(1,keepdim=True)广播机制(broadcast)Softmax函数和交叉熵损失函数Softmax函数交叉熵损失函数感知机多层感知机前言之前看吴恩达
- # 附录3 傅立叶分析应用
技术与健康
Excel数据分析与模拟决策傅立叶分析线性回归excel数据分析
傅立叶分析不仅限于理论研究,它在金融、信号处理、环境科学、医疗、机械维护等众多领域具有广泛的实际应用。在Excel中,傅立叶分析工具为用户提供了简单而高效的频域分析手段,帮助发现数据中的周期性特征,识别异常频率,从而做出有针对性的决策。1.金融市场分析:周期性趋势发现应用背景:金融市场数据,如股票价格、指数、交易量等,往往包含周期性波动。投资者和分析师可以利用傅立叶分析来识别这些周期,帮助预测市场
- 【17】 傅立叶分析
技术与健康
Excel数据分析与模拟决策线性回归excel数据分析
傅立叶分析(FourierAnalysis)是Excel数据分析工具库中的一种方法,用于将时间序列数据分解为不同频率的正弦波(sinusoidalcomponents)。它特别适用于分析周期性数据或信号处理,帮助用户发现数据中的周期性模式、频率成分及其幅度。傅立叶变换将复杂的时间序列数据转化为频域数据,这意味着它能把数据分解为不同频率的波形,这在物理、金融市场、工程信号处理中有广泛的应用。傅立叶分
- 基于Simulink的单个PWM信号的傅里叶分析&特定谐波抑制
科研辅导帮
傅立叶分析
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理
- 基于 MATLAB仿真卡尔曼滤波原理及应用
资深码侬
matlabmatlab开发语言
基于MATLAB仿真卡尔曼滤波原理及应用简介:《卡尔曼滤波原理及应用:MATLAB仿真》主要介绍数字信号处理中的卡尔曼(Kalman)滤波算法及在相关领域应用。《卡尔曼滤波原理及应用:MATLAB仿真》共7章。第1章为绪论。第2章介绍MATLAB算法仿真的编程基础。第3章介绍线性Kalman滤波。第4章讨论扩展Kalman滤波,并介绍其在目标跟踪和制导领域的应用和算法仿真。第5章介绍UKF滤波算法
- 高速图像采集卡设计原理图: 613-VU9P信号处理板卡
大嘴教授
信号处理fpga开发
基于6UVPXC6678+XCVU9P的信号处理板卡一、板卡概述板卡基于6UVPX标准结构,包含一个C6678DSP芯片,一个XCVU9P高性能FPGA,双路HPCFMC。二、处理板技术指标•DSP处理器采用TI8核处理器TMS320C6678;•DSP外挂一组64bitDDR3颗粒,总容量2GB,数据速率1333Mb/s;•DSP采用EMIF16NorFlash加载模式,NorFlash容量32
- 人工智能之数学基础:对线性代数中逆矩阵的思考?
每天五分钟玩转人工智能
机器学习深度学习之数学基础线性代数人工智能矩阵机器学习逆矩阵向量
本文重点逆矩阵是线性代数中的一个重要概念,它在线性方程组、矩阵方程、动态系统、密码学、经济学和金融学以及计算机图形学等领域都有广泛的应用。通过了解逆矩阵的定义、性质、计算方法和应用,我们可以更好地理解和应用线性代数知识,解决各种实际问题。关于逆矩阵的思考现在我们有一个计算过程如上所示,我们知道矩阵的作用就是函数,向量a先经过矩阵1进行函数作用,然后再经过矩阵2函数作用最后可以得到输出向量c,这个过
- 00计算机视觉学习内容
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)开发需要掌握数学基础、编程语言、图像处理、机器学习、深度学习等多个方面的知识。以下是一个系统的学习路线:1️⃣数学基础(核心理论支撑)计算机视觉涉及很多数学概念,以下是必备数学知识:✅线性代数(矩阵运算是计算机视觉的核心)向量、矩阵运算(加减、乘法、转置)特征值与特征向量SVD(奇异值分解),用于图像压缩、降维齐次坐标变换(用于3D计算机视觉)✅概率统计(
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- python中的numpy库有什么优缺点_python中关于numpy库的介绍
weixin_34938347
1.Numpy是什么?NumPy(NumericalPython的缩写)是一个开源的Python科学计算库。使用NumPy,就可以很自然地使用数组和矩阵。NumPy包含很多实用的数学函数,涵盖线性代数运算、傅里叶变换和随机数生成等功能。这个库的前身是1995年就开始开发的一个用于数组运算的库。经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深
- 小波包阈值去噪方法
yyytucj
人工智能算法
针对小波包去噪对含强白噪声的信号处理效果不理想问题,提出了基于互相关分析优化的VMD-小波包阈值去噪方法。该方法融合了VMD和小波包去噪的优势,通过VMD把含噪信号分解成若干个模态分量,根据互相关分析提出的临界相关系数从所有模态分量中搜寻极优模态分量,之后利用小波包阈值去噪对极优模态分量进行处理。实验结果表明,该方法对含强白噪声的信号去噪效果具有优势,能够保全信号的有效分量,克服了传统VMD去噪的
- 物理竞赛中的线性代数
yh2021SYXMZ
线性代数
线性代数1行列式1.1nnn阶行列式定义1.1.1:称以下的式子为一个nnn阶行列式:∣A∣=∣a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann∣\begin{vmatrix}\mathbfA\end{vmatrix}=\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&
- 费曼学习法11 - NumPy 的 “线性代数” 之力:矩阵运算与应用 (应用篇)
修昔底德
Python费曼学习法线性代数学习numpypython人工智能深度学习
第六篇:NumPy的“线性代数”之力:矩阵运算与应用(应用篇)开篇提问:考虑一个实际问题:图像的旋转。当你使用图像编辑软件旋转照片时,背后是什么在驱动图像像素的精确移动?答案是线性代数。图像可以表示为数值矩阵,而旋转、缩放、剪切等图像变换,都可以通过矩阵运算来实现。线性代数不仅是图像处理的基石,也在机器学习、物理模拟、工程计算等众多领域扮演着核心角色。它提供了一套强大的数学工具,用于描述和解决多维
- 通往 AI 之路:Python 机器学习入门-线性代数
一小路一
从0开始学习机器学习机器学习人工智能python后端开发语言线性代数
2.1线性代数(机器学习的核心)线性代数是机器学习的基础之一,许多核心算法都依赖矩阵运算。本章将介绍线性代数中的基本概念,包括标量、向量、矩阵、矩阵运算、特征值与特征向量,以及奇异值分解(SVD)。2.1.1标量、向量、矩阵1.标量(Scalar)标量是一个单独的数,例如:a=5在Python中:a=5#标量2.向量(Vector)向量是由多个数值组成的一维数组,例如:v=[2,3,5]Pytho
- 【python数据挖掘之numpy】-数组及对象属性和数据转换
sc.溯琛
python数据挖掘numpy
Numpy是一个Python库,用于处理多维数组和矩阵,以及针对这些数组执行数学运算的函数。它提供了高效的数组对象和相关的操作,可以用于快速处理大量数据。Numpy的主要功能包括:创建数组、数组运算、数组索引和切片、线性代数、随机数生成等。Numpy在科学计算、数据分析、机器学习等领域都广泛应用。tips:(本博文在jupyter中实训)目录一、创建数组对象1.array()函数来创建数组的对象2
- 别只会用别人的模型了,自学Ai大模型,顺序千万不要搞反了!刚入门的小白必备!
ai大模型应用开发
人工智能pdf机器学习面试AI
在使用诸如DeepSeek、ChatGPT、豆包、文心一言等大模型之余,你是否知道这些大模型背后的技术原理是什么?假如让你从头开始学习大模型,你知道应该遵循什么样的路线嘛?今天给大家介绍一下Ai大模型的学习路线,顺序千万不要搞反了!,大家可以按照这个路线进行学习。一、前置阶段数学:线性代数、高等数学自然语言处理:Word2Vec、Seq2SeqPython:Pyotch、Tensorflow二、基
- [自然语言处理基础]NumPy基本操作
Steve lu
自然语言处理NLP自然语言处理numpypythonconda人工智能机器学习深度学习
什么是NumPyNumPy是Python中科学计算的基本包。它是一个Python库,提供多维数组对象、各种派生对象(如掩码数组和矩阵)以及用于对数组进行快速操作的各种例程,包括数学、逻辑、形状操作、排序、选择、I/O、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。NumPy数组在创建时具有固定大小,这与Python列表(可以动态增长)不同。更改数组的大小ndarray将创建新数组并删除
- 信号处理基础:信号的时域和频域分析_(9).傅里叶变换
kkchenkx
信号处理技术仿真模拟信号处理
傅里叶变换引言傅里叶变换是一种将信号从时域转换到频域的数学工具。通过傅里叶变换,可以将复杂的时域信号分解为一系列简单的基本频率分量,这对于信号的分析、处理和设计具有重要意义。傅里叶变换在信号处理领域有着广泛的应用,包括滤波、频谱分析、通信系统设计等。傅里叶级数连续时间傅里叶级数(CTFS)连续时间傅里叶级数(Continuous-TimeFourierSeries,CTFS)是一种将周期性连续时间
- Linux----进程间的通信
weixin_51790712
linux运维服务器
进程间通信之信号:信号--软中断中断信号---中断源中断(信号)处理程序---负责对该中断(信号)做出反应的//信号处理函数的注册函数#includetypedefvoid(*sighandler_t)(int);sighandler_tsignal(intsignum,sighandler_thandler);功能:给signum信号设置一个信号处理函数参数:@signum要处理的信号@hand
- Ubuntu 20.04下配置VSCode以支持Eigen库开发
JANGHIGH
VSCodeubuntuvscodelinux
这里写目录标题1.安装Eigen库2.配置VSCode的C++开发环境3.配置`c_cpp_properties.json`4.编写代码并测试5.配置`tasks.json`(可选)6.运行程序总结在VSCode中配置Eigen库(用于线性代数、矩阵和向量运算的C++库)的步骤如下:1.安装Eigen库在Ubuntu20.04上,可以通过以下命令安装Eigen库:sudoaptupdatesudo
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep