✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
个人主页:Matlab科研工作室
个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击
智能优化算法 神经网络预测 雷达通信 无线传感器 电力系统
信号处理 图像处理 路径规划 元胞自动机 无人机
内容介绍
在机器学习领域,数据分类是一个重要的任务,其目的是根据已有的数据样本,将未知的数据样本分配到不同的类别中。为了解决这个问题,许多分类算法被提出和应用。其中一种被广泛研究和使用的算法是广义神经网络(Generalized Regression Neural Network,GRNN)。本文将介绍如何通过结合adaboost算法和GRNN来实现数据分类。
首先,让我们了解一下adaboost算法。adaboost是一种集成学习算法,其主要思想是通过逐步训练多个弱分类器,并将它们组合成一个强分类器。在每一轮训练中,adaboost会调整样本的权重,使得前一轮分类错误的样本在后续训练中得到更多的关注。通过这种方式,adaboost能够提高整体分类的准确性。
接下来,我们将adaboost与GRNN结合起来。GRNN是一种基于概率的神经网络模型,它通过计算输入样本与训练样本之间的距离来进行分类。GRNN的主要优点是具有较好的泛化能力和对噪声数据的鲁棒性。在结合adaboost之前,我们需要将GRNN作为弱分类器进行训练。
训练过程如下:首先,我们将训练数据分成两个部分,一个用于训练GRNN,另一个用于训练adaboost。在训练GRNN时,我们将输入样本与每个训练样本计算距离,并根据距离的大小将样本分配到不同的类别中。然后,我们将GRNN的输出作为输入特征,将训练样本的真实类别作为标签,使用adaboost进行训练。在每一轮训练中,adaboost会根据前一轮的分类结果调整样本的权重,并更新GRNN的参数。通过多轮训练,我们可以得到一个准确度较高的分类模型。
在测试阶段,我们将未知的数据样本输入到训练好的模型中。首先,我们将样本与GRNN计算距离,然后将GRNN的输出作为输入特征,使用adaboost进行分类。最后,我们可以得到未知样本的分类结果。
通过结合adaboost和GRNN,我们可以得到一个准确度较高的分类模型,具有较好的泛化能力和对噪声数据的鲁棒性。然而,需要注意的是,该方法可能对训练数据的分布敏感,因此在应用时需要谨慎选择训练数据。
总结而言,通过结合adaboost和GRNN,我们可以实现对数据的准确分类。这种方法不仅提高了分类的准确性,还具有较好的泛化能力和对噪声数据的鲁棒性。随着机器学习领域的不断发展,我们相信这种方法将在实际应用中发挥重要作用,并为解决实际问题提供有效的解决方案。
部分代码
%% grnn
%% 1.初始化环境
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 权重初始化
[mm,nn]=size(P_train);
D(1,:)=ones(1,nn)/nn;
⛳️ 运行结果
参考文献
[1] 徐富强,郑婷婷,方葆青.基于广义回归神经网络(GRNN)的函数逼近[J].巢湖学院学报, 2010(6):6.DOI:10.3969/j.issn.1672-2868.2010.06.003.
[2] 倪贤达,杨得航,左桐,等.基于遗传算法改进GRNN神经网络的施肥量预测研究[J]. 2020.
[3] 周亮,周骏顺,张丽佳.基于GRNN-AdaBoost的多设备融合定位方法:201910861355[P][2023-09-28].