python多光谱遥感数据处理、图像分类、定量评估及机器学习方法

  普通数码相机记录了红、绿、蓝三种波长的光,多光谱成像技术除了记录这三种波长光之外,还可以记录其他波长(例如:近红外、热红外等)光的信息。与昂贵、不易获取的高光谱、高空间分辨率卫星数据相比,中等分辨率的多光谱卫星数据可以免费下载获取,例如:landsat数据、哨兵-2号数据、Aster数据、Modis数据等,这些海量的长时间对地观测数据,蕴藏着丰富的信息。随着无人机行业的快速发展,无人机作为一种低成本的平台,具有时效高、灵活性强、空间分辨率优等特点,可以作为卫星多光谱数据的有效补充,也发挥了越来越重要的作用。

基于卫星或无人机平台的多光谱数据在地质、土壤调查和农业等应用领域发挥了重要作用,在地质应用方面,综合Aster的短波红外波段、landsat热红外波段等多光谱数据,可以通过不同的多光谱数据组合,协同用于矿物信息有效提取。此外,随着机器学习方法的深入应用,多光谱数据在矿物填图、矿山环境监测等方面都发挥了重要作用,并显示出巨大的应用潜力。在农业应用领域,无人机、卫星多光谱遥感技术已成为作物长势监测的重要技术手段。通过最佳植被指数和最优的数据采集时期,构建相关地区的水稻、小麦等作物估产模型,可以为不同尺度的作物估产和长势评估提供重要技术支持。针对土壤调查研究,以卫星、无人机多光谱为主要数据源,结合多种机器学习方法,可以进行土壤有机质、盐度等理化参数评估。

  本课程从基础理论、技术方法、应用实践三方面对多光谱遥感技术进行讲解。基础理论篇,介绍多光谱的基本概念和理论,介绍了Landsat数据、哨兵-2号数据、Aster数据、Modis数据等多光谱数据说明和下载方法。技术方法篇,介绍基于ENVI的上述多光谱数据处理方法,包括数据辐射定标、大气校正等预处理方法,波段组合、光谱指数计算、图像监督、非监督分类等方法。针对多光谱数据处理,除了ENVI自带和拓展的功能之外,提供一套基于Python开发方法,结合目前主流的机器学习和深度学习方法,介绍多光谱遥感数据的整理、图像分类、多时间序列处理、多传感器协同等方法,基于python实现多光谱数据处理和分析过程。通过矿物识别,农作物长势评估、土壤质量评价等案例,提供可借鉴的多光谱应用领域的技术服务方案,结合ENVI软件、Python开发、科学数据可视化、数据处理与机器学习、图像处理等功能模块,,对学习到的理论和方法进行高效反馈。

  通过对光谱、图像等数据处理,掌握岩矿、土壤、植被等地物的光谱特征和图像特征,结合ENVI等专业软件、Python开发工具平台,开展多光谱数据预处理、图像分类、定量评估、机器学习等方法的实践和开发,提高运用多光谱遥感技术解决实际问题能力。

python多光谱遥感数据处理、图像分类、定量评估及机器学习方法_第1张图片

python多光谱遥感数据处理、图像分类、定量评估及机器学习方法_第2张图片

python多光谱遥感数据处理、图像分类、定量评估及机器学习方法_第3张图片

python多光谱遥感数据处理、图像分类、定量评估及机器学习方法_第4张图片

python多光谱遥感数据处理、图像分类、定量评估及机器学习方法_第5张图片

python多光谱遥感数据处理、图像分类、定量评估及机器学习方法_第6张图片

你可能感兴趣的:(python,机器学习,多光谱)