leetcode中的背包DP变型

  • 416. Partition Equal Subset Sum
    0-1 背包,能否装满,可行性分析
    自顶向下和自底向上都可以
//一开始想的是用int[]数组的dp,最后返回dp[target]
//但这个在数据量特别大的时候,可能会overflow
//比如说100个100,构成10000, target就是5000,C(100, 50) = 1.0089134454556424e+29
//能不能就是讨论一个可行性嘛,直接用一个boolean数组就行了
class Solution {
    public boolean canPartition(int[] nums) {
        int sum = 0;
        for (int num : nums) sum += num;
        if (sum % 2 == 1) return false;
        int target = sum / 2;
        boolean[] dp = new boolean[target + 1];
        dp[0] = true;
        for (int i = 0; i < nums.length; i++) {
            for (int j = target; j >= nums[i]; j--) {
                if (dp[j - nums[i]]) dp[j] = true;
            }
        }
        return dp[target];
    }
}
  • 494. Target Sum
    0-1 背包,最多装满方法
    要注意有的item值为0(占用空间为0),二维数组初始化的时候要注意
class Solution {
    //assume all numbers can be divided to two groups, positive and negative
    //a is positive, b is negative
    //a + |b| = sum, a + b = S => 2a = sum + S
    //if there is any sol, sum + S must be even
    public int findTargetSumWays(int[] nums, int S) {
        int sum = 0;
        for (int num : nums) sum += num;
        if (sum < S || (sum + S) % 2 == 1) return 0;
        //将其转变成0-1背包问题,每个item只能选一次,有多少种方法sum to target
        int n = nums.length;
        int target = (sum + S) / 2;
        int[][] dp = new int[n + 1][target + 1];
        dp[0][0] = 1;                  
        for (int i = 1; i <= n; i++) {
            if (nums[i-1] == 0) {            //因为数字是0,对于这个item,选或不选都一样
                dp[i][0] = dp[i-1][0] * 2;
            } else {
                dp[i][0] = dp[i-1][0];
            }
        }
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= target; j++) {
                if (j < nums[i-1]) {
                    dp[i][j] = dp[i-1][j];
                } else {
                    dp[i][j] = dp[i-1][j] + dp[i-1][j - nums[i-1]];
                }
            }
        }
        return dp[n][target];
    }
}
//对于空间复杂度的优化
class Solution {
    //assume all numbers can be divided to two groups, positive and negative
    //a is positive, b is negative
    //a + |b| = sum, a + b = S => 2a = sum + S
    //if there is any sol, sum + S must be even
    public int findTargetSumWays(int[] nums, int S) {
        int sum = 0;
        for (int num : nums) sum += num;
        if (sum < S || (sum + S) % 2 == 1) return 0;
        //将其转变成0-1背包问题,每个item只能选一次,有多少种方法sum to target
        int n = nums.length;
        int target = (sum + S) / 2;
        int[] dp = new int[target + 1];
        dp[0] = 1;                  
        for (int i = 0; i < n; i++) {
            for (int j = target; j >= nums[i]; j--) {
                //如果遇到nums[i] == 0的情况,会再加一遍
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[target];
    }
}
  • 474. Ones and Zeroes
    0-1背包
    original probleam has only one limitation: size
    now we hace two limitations
class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        int[][] dp = new int[m+1][n+1];
        for (String str : strs) {
            int zero = 0, one = 0;
            for (char c : str.toCharArray()) {
                if (c == '0') zero++;
                if (c == '1') one++;
                //zero += (c - '0') ^ 1;        //这一部分使用位运算会更快
                //one += ('1' - c) ^ 1;
            }
            
            for (int i = m; i >= zero; i--) {
                for (int j = n; j >= one; j--) {
                    dp[i][j] = Math.max(dp[i][j], dp[i-zero][j-one] + 1);
                }
            }
        }
        return dp[m][n];
    }
}
  • 322. Coin Change
    完全背包,硬币可以选无数次
class Solution {
    //each coin can be choosen unlimited times 
    public int coinChange(int[] coins, int amount) {
        int[] dp = new int[amount + 1];
        Arrays.fill(dp, Integer.MAX_VALUE);
        dp[0] = 0;
        for (int i = 0; i < coins.length; i++) {
            int w = coins[i];
            for (int j = w; j <= amount; j++) {
                if (dp[j - w] != Integer.MAX_VALUE)
                    dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
            }
        }
        return dp[amount] == Integer.MAX_VALUE ? -1 : dp[amount];
    }
}
  • 518. Coin Change 2
    完全背包,硬币可以选无数次,组合方法数
class Solution {
    public int change(int amount, int[] coins) {
        int n = coins.length;
        int[] dp = new int[amount + 1];
        dp[0] = 1;
        for (int i = 0; i < n; i++) {
            int w = coins[i];
            for (int j = w; j <= amount; j++) {
                dp[j] += dp[j - coins[i]]; 
            }
        }
        return dp[amount];
    }
}
  • 377. Combination Sum IV
    完全背包问题
    给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。
    请注意,顺序不同的序列被视作不同的组合。
class Solution {
    public int combinationSum4(int[] nums, int target) {
        int n = nums.length;
        int[] dp = new int[target + 1];
        dp[0] = 1;
        for (int j = 1; j <= target; j++) {
            for (int i = 0; i < n; i++) {
                if (j >= nums[i]) dp[j] += dp[j - nums[i]];
            }
        }
        return dp[target];
    }
}
  • 139. Word Break
    完全背包
class Solution {
    public boolean wordBreak(String s, List wordDict) {
        int n = s.length();
        boolean[] dp = new boolean[n + 1];
        dp[0] = true;
        for (int i = 1; i <= n; i++) {
            for (String word : wordDict) {
                int len = word.length();
                if (i >= len && dp[i - len] && word.equals(s.substring(i-len, i))) dp[i] = true;
            }
        }
        return dp[n];
    }
}
//做了一些优化,预先将存在的word放入set中,并限制内层循环的len
class Solution {
    public boolean wordBreak(String s, List wordDict) {
        Set set = new HashSet<>();
        int maxLen = 0;
        for (String word : wordDict) {
            set.add(word);
            maxLen = Math.max(maxLen, word.length());
        }
        int n = s.length();
        boolean[] dp = new boolean[n + 1];
        dp[0] = true;
        for (int i = 1; i <= n; i++) {
            for (int len = 0; len <= maxLen && len <= i; len++) { //j is the possible len of word
                if (dp[i-len] && set.contains(s.substring(i-len, i))) {   
                    dp[i] = true;
                    break;
                }
            }
        }
        return dp[n];
    }
}

你可能感兴趣的:(leetcode中的背包DP变型)