import os
import argparse
import skimage
import skimage.io as sio
import torch
parser = argparse.ArgumentParser(description='Pre-processing DIV2K .jpeg images')
parser.add_argument('--pathFrom', default='../../../../datadrive/DIV2K/DIV2K_train_HR',
help='directory of images to convert')
parser.add_argument('--pathTo', default='../../../../dataset/DIV2K_decoded',
help='directory of images to save')
parser.add_argument('--split', default=False,
help='save individual images')
parser.add_argument('--select', default='',
help='select certain path')
args = parser.parse_args()
for (path, dirs, files) in os.walk(args.pathFrom):
print(path)
targetDir = path.replace(args.pathFrom, args.pathTo)
if len(args.select) > 0 and path.find(args.select) == -1:
continue
if not os.path.exists(targetDir):
os.mkdir(targetDir)
if len(dirs) == 0:
pack = {}
n = 0
for fileName in files:
(idx, ext) = os.path.splitext(fileName)
if ext == '.png':
png = sio.imread(os.path.join(path, fileName))
tensor = torch.Tensor(png.astype(float)).byte()
if args.split:
torch.save(tensor, os.path.join(targetDir, idx + '.pt'))
else:
pack[int(idx.split('x')[0])] = tensor
n += 1
if n % 100 == 0:
print('Converted ' + str(n) + ' images.')
if len(pack) > 0:
torch.save(pack, targetDir + '/pack.pt')
print('Saved pt binary.')
del pack